Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(12): 120301    DOI: 10.1088/1674-1056/21/12/120301
GENERAL Prev   Next  

Alternative routes to equivalent classical models of a quantum system

M. Radonjić, Slobodan Prvanović, Nikola Burić
a Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
b Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai University, Shanghai 200072, China
Abstract  Coarse-graining of some sort is the fundamental and unavoidable step in any attempt to derive the classical mechanical behavior from the quantum formalism. We utilize two-mode Bose-Hubbard model to illustrate how different coarse-grained systems can be naturally associated with a fixed quantum system if it is compatible with different dynamical algebras. Alternative coarse-grained systems generate different evolutions of the same physical quantities, and the difference becomes negligible only in the appropriate macro-limit.
Keywords:  two-mode Bose-Hubbard model      coarse-grained system      Hamilton operator      system dynamical algebra  
Received:  30 May 2012      Revised:  03 July 2012      Accepted manuscript online: 
PACS:  03.65.Fd (Algebraic methods)  
  03.65.Sq (Semiclassical theories and applications)  
Fund: Project supported by the Ministry of Education and Science of the Republic of Serbia (Grant Nos. 171017, 171028, 171038, and III45016). We would like to acknowledge partial support by COST (Action MP1006).
Corresponding Authors:  Nikola Burić     E-mail:

Cite this article: 

M. Radonjić, Slobodan Prvanović, Nikola Burić Alternative routes to equivalent classical models of a quantum system 2012 Chin. Phys. B 21 120301

[1] Landsman N P 1998 Mathematical Topics Between Classical and Quantum Mechanics (New York: Springer-Verlag)
[2] Zurek W H 2003 Rev. Mod. Phys. 73 715
[3] Schlosshauer M 2007 Decoherence and the Quantum-to-Classical Transition (Berlin: Springer)
[4] Bassi A and Ghirardi G 2003 Phys. Rep. 379 257
[5] Percival I C 1999 Quantum State Difussion (Cambridge: Cambridge University Press)
[6] Kofler J and Brukner Č 2008 Phys. Rev. Lett. 101 090403.
[7] Hornberger K, Gerlich S, Haslinger P, Nimmrichter S and Arndt M 2012 Rev. Mod. Phys. 84 157
[8] O'Connell A D, Hofheinz M, Ansmann M, Radoslaw C, Bialczak C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M and Cleland A N 2010 Nature 464 697
[9] Poot M and van der Zant H S J 2012 Phys. Rep. 511 273
[10] Radonjić M, Prvanović S and Burić N 2011 Phys. Rev. A 84 022103
[11] Radonjić M, Prvanović S and Burić N 2012 Phys. Rev. A 85 022117
[12] Burić N 2011 Chin. Phys. B 20 120306
[13] Albiez M, Gati R, Fölling J, Hunsmann S, Cristiani M and Oberthaler M K 2005 Phys. Rev. Lett. 95 010402
[14] Gati R, Hemmerling B, Fölling J, Albiez M and Oberthaler M K 2006 Phys. Rev. Lett. 96 130404
[15] Burić N 2008 Ann. Phys. (NY) 233 17
[16] Brody D C, Gustavsson A C T and Hughston L 2008 J. Phys. A 41 475301
[17] Brody D C and Hughston L P 2001 J. Geom. Phys. 38 19
[18] Liu J, Wu B and Niu Q 2003 Phys. Rev. Lett. 90 170404
[19] Wu B, Liu J and Niu Q 2005 Phys. Rev. Lett. 94 140402
[20] Perelomov A M 1986 Generalized Coherent States and Their Applications (Berlin: Springer-Verlag)
[1] Observation of size-dependent boundary effects in non-Hermitian electric circuits
Luhong Su(苏鹭红), Cui-Xian Guo(郭翠仙), Yongliang Wang(王永良), Li Li(李力), Xinhui Ruan(阮馨慧), Yanjing Du(杜燕京), Shu Chen(陈澍), and Dongning Zheng(郑东宁). Chin. Phys. B, 2023, 32(3): 038401.
[2] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[3] Exact solutions of non-Hermitian chains with asymmetric long-range hopping under specific boundary conditions
Cui-Xian Guo(郭翠仙) and Shu Chen(陈澍). Chin. Phys. B, 2022, 31(1): 010313.
[4] Connes distance of 2D harmonic oscillators in quantum phase space
Bing-Sheng Lin(林冰生) and Tai-Hua Heng(衡太骅). Chin. Phys. B, 2021, 30(11): 110203.
[5] Supersymmetric structures of Dirac oscillators in commutative and noncommutative spaces
Jing-Ying Wei(魏静莹), Qing Wang(王青), and Jian Jing(荆坚). Chin. Phys. B, 2021, 30(11): 110307.
[6] Introducing the general condition for an operator in curved space to be unitary
Jafari Matehkolaee Mehdi. Chin. Phys. B, 2021, 30(8): 080301.
[7] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[8] Lie transformation on shortcut to adiabaticity in parametric driving quantum systems
Jian-Jian Cheng(程剑剑), Yao Du(杜瑶), and Lin Zhang(张林). Chin. Phys. B, 2021, 30(6): 060302.
[9] Exact solution of the Gaudin model with Dzyaloshinsky-Moriya and Kaplan-Shekhtman-Entin-Wohlman-Aharony interactions
Fa-Kai Wen(温发楷) and Xin Zhang(张鑫). Chin. Phys. B, 2021, 30(5): 050201.
[10] Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields
M Eshghi, R Sever, S M Ikhdair. Chin. Phys. B, 2018, 27(2): 020301.
[11] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians: Bethe ansatz method
M Baradaran, H Panahi. Chin. Phys. B, 2017, 26(6): 060301.
[12] Inverse problem of quadratic time-dependent Hamiltonians
Guo Guang-Jie (郭光杰), Meng Yan (孟艳), Chang Hong (常虹), Duan Hui-Zeng (段会增), Di Bing (邸冰). Chin. Phys. B, 2015, 24(8): 080301.
[13] Solutions of the D-dimensional Schrödinger equation with Killingbeck potential: Lie algebraic approach
H. Panahi, S. Zarrinkamar, M. Baradaran. Chin. Phys. B, 2015, 24(6): 060301.
[14] Cluster algebra structure on the finite dimensional representations of affine quantum group Uq(Â3)
Yang Yan-Min (杨彦敏), Ma Hai-Tao (马海涛), Lin Bing-Sheng (林冰生), Zheng Zhu-Jun (郑驻军). Chin. Phys. B, 2015, 24(1): 010201.
[15] Unsuitable use of spin and pseudospin symmetries with a pseudoscalar Cornell potential
L. B. Castro, A. S. de Castro. Chin. Phys. B, 2014, 23(9): 090301.
No Suggested Reading articles found!