Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 094215    DOI: 10.1088/1674-1056/ab38a3
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Properties of metal-insulator-metal waveguide loop reflector

Hu Long(龙虎)1,2, Xuan-Ke Zeng(曾选科)1, Yi Cai(蔡懿)1, Xiao-Wei Lu(陆小微)1, Hong-Yi Chen(陈红艺)1, Shi-Xiang Xu(徐世祥)1, Jing-Zhen Li(李景镇)1
1 Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, College of Electronic Science and Technology, Shenzhen University, Shenzhen 518060, China;
2 Key Laboratory of Optoelectronic Devices and System of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
Abstract  

A new type and easy-to-fabricate metal-insulator-metal (MIM) waveguide reflector based on Sagnac loop is designed and investigated. The transfer matrix theoretical model for the transmission of electric fields in the reflector is established, and the properties of the reflector are studied and analyzed. The simulation results indicate that the reflectivity strongly depends on the coupling splitting ratio determined by the coupling length. Accordingly, different reflectivities can be realized by varying the coupling length. For an optimum coupling length of 750 nm, the 3-dB reflection bandwidth of the MIM waveguide reflector is as wide as 1.5 μm at a wavelength of 1550 nm, and the peak reflectivity and isolation are 78% and 23 dB, respectively.

Keywords:  surface plasmon polaritons      waveguide      reflector  
Received:  08 April 2019      Revised:  02 July 2019      Accepted manuscript online: 
PACS:  42.82.-m (Integrated optics)  
  42.82.Et (Waveguides, couplers, and arrays)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61827815 and 61775142).

Corresponding Authors:  Jing-Zhen Li     E-mail:  lijz@szu.edu.cn

Cite this article: 

Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇) Properties of metal-insulator-metal waveguide loop reflector 2019 Chin. Phys. B 28 094215

[1] Raether H 1988 Surface plasmons on smooth and rough surfaces and on gratings (Heidelberg:Springer, Berlin)
[2] Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
[3] Li S, Wang Y, Jiao R, Wang L, Duan G and Yu L 2017 Opt. Express 25 3525
[4] Wang Y, Li S, Zhang Y and Yu L 2016 IEEE Photonics J. 8 1
[5] Chen J, Li Z, Zou Y, Deng Z and Xiao J 2013 Plasmonics 8 1627
[6] Yang L, Li P, Wang H and Li Z 2018 Chin. Phys. B 27 094216
[7] Berini P and De Leon I 2012 Nat. Photon. 6 16
[8] Yao J, Wei Q, Ma Q Y and Wu D 2017 Chin. Phys. B 26 057302
[9] Shin Y J, Son J H, Lee D H and Lee M H 2017 J. Nanosci. Nanotechnol. 17 7093
[10] Wang G, Lu H, Liu X, Mao D and Duan L 2011 Opt. Express 19 3513
[11] Zhao S, Zhang H C, Zhao J and Tang W X 2017 Sci. Rep. 7 10576
[12] Chen J, Yang J, Chen Z, Fang Y J, Zhan P and Wang Z L 2012 AIP Adv. 2 012145
[13] Tian M, Lu P, Chen L, Liu D and Peyghambarian N 2012 Opt. Commun. 285 5122
[14] Gong Y, Wang L, Hu X, Li X and Liu X 2009 Opt. Express 17 13727
[15] Davoodi F and Granpayeh N 2019 Opt. Quantum Electron. 51 9
[16] Liu J, Fang G, Zhao H, Zhang Y and Liu S 2009 Opt. Express 17 20134
[17] Lin X S and Huang X G 2008 Opt. Lett. 33 2874
[18] Shen X, Wang Y, Yan X, Yuan L and Sang T 2016 Appl. Opt. 55 6443
[19] Wang S, Xu Y, Lan S and Wu L 2011 Plasmonics 6 689
[20] Mortimore D B 1988 J. Lightwave Technol. 6 1217
[21] Han Z, Liu L and Forsberg E 2006 Opt. Commun. 259 690
[22] Gramotnev D K, Vernon K C and Pile D F P 2008 Appl. Phys. B:Lasers Opt. 93 99
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[5] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[6] Spatial and spectral filtering of tapered lasers by using tapered distributed Bragg reflector grating
Jing-Jing Yang(杨晶晶), Jie Fan(范杰), Yong-Gang Zou(邹永刚),Hai-Zhu Wang(王海珠), and Xiao-Hui Ma(马晓辉). Chin. Phys. B, 2022, 31(8): 084203.
[7] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[8] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[9] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[10] Penumbra lunar eclipse observations reveal anomalous thermal performance of Lunakhod 2 reflectors
Tian-Quan Gao(高添泉), Cai-Shi Zhang(张才士), Hong-Chao Zhao(赵宏超), Li-Xiang Zhou(周立祥), Xian-Lin Wu(吴先霖), Hsienchi Yeh(叶贤基), and Ming Li(李明). Chin. Phys. B, 2022, 31(5): 050602.
[11] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[12] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[13] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[14] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[15] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
No Suggested Reading articles found!