Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 047201    DOI: 10.1088/1674-1056/26/4/047201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Investigation of the surface orientation influence on 10-nm double gate GaSb nMOSFETs

Shaoyan Di(邸绍岩)1, Lei Shen(沈磊)1, Zhiyuan Lun(伦志远)1, Pengying Chang(常鹏鹰)1, Kai Zhao(赵凯)1,3, Tiao Lu(卢朓)2, Gang Du(杜刚)1, Xiaoyan Liu(刘晓彦)1
1 Institute of Microelectronics, Peking University, Beijing 100871, China;
2 CAPT, HEDPS, IFSA Collaborative Innovation Center of Ministry of Education, LMAM & School of Mathematical Sciences, Peking University, Beijing 100871, China;
3 School of Information and Communication, Beijing Information Science and Technology University, Beijing 100101, China
Abstract  The performance of double gate GaSb nMOSFETs with surface orientations of (100) and (111) are compared by deterministically solving the time-dependent Boltzmann transport equation (BTE). Results show that the on-state current of the device with (111) surface orientation is almost three times larger than the (100) case due to the higher injection velocity. Moreover, the scattering rate of the (111) device is slightly lower than that of the (100) device.
Keywords:  Boltzmann transport equation      GaSb      surface orientation      double gate  
Received:  28 November 2016      Revised:  20 January 2017      Accepted manuscript online: 
PACS:  72.20.Dp (General theory, scattering mechanisms)  
  71.15.-m (Methods of electronic structure calculations)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674008, 61421005, and 61404005).
Corresponding Authors:  Kai Zhao, Xiaoyan Liu     E-mail:  k.zhao.chn@gmail.com;xyliu@ime.pku.edu.cn

Cite this article: 

Shaoyan Di(邸绍岩), Lei Shen(沈磊), Zhiyuan Lun(伦志远), Pengying Chang(常鹏鹰), Kai Zhao(赵凯), Tiao Lu(卢朓), Gang Du(杜刚), Xiaoyan Liu(刘晓彦) Investigation of the surface orientation influence on 10-nm double gate GaSb nMOSFETs 2017 Chin. Phys. B 26 047201

[1] Del Alamo J A 2011 Nature 479 317
[2] Takagi S and Takenaka M 2015 Solid State Device Research Conference, September 14-18, 2015, Graz, Austria, p. 20
[3] Kalna K, Yang L and Asenov A 2005 Solid-State Device Research Conference, September 16, 2005, Grenoble, France, p. 169
[4] Solomon P M and Laux S E 2001 IEDM Tech. Dig., December 2-5, 2001, Washington DC, USA, p. 95
[5] Rodwell M, Frensley W, Steiger S and Chagarov E 2010 Proc. Device Research Conference, June 21-23, 2010, Indiana, USA, p. 149
[6] Kim R, Rakshit T, Kotlyar R and Hasan S 2011 IEEE Electron Dev. Lett. 32 746
[7] Luisier M 2011 IEEE Electron Dev. Lett. 32 1686
[8] Chang P, Liu X, Du G and Zhang X 2014 IEDM Tech. Dig., December 15-17, 2014, San Francisco, USA, p. 7.7.1
[9] Chang P, Zeng L, Liu X and Du G 2015 Solid State Electronics 113 68
[10] Chang P, Liu X, Zeng L and Du G 2015 Jpn. J. Appl. Phys. 54 04DF08
[11] Lu T, Du G, Liu X and Zhang P 2011 Commun. Comput. Phys. 10 305
[12] Di S, Zhao K, Lu T, Du G and Liu X 2016 J. Comput. Electron. 15 770
[13] Di S, Zhao K, Lun Z, Lu T, Du G and Liu X 2016 IEEE Symp. VLSI-TSA, April 25-28, 2016, Hsinchu, Taiwan, p. 1
[14] Abdallah N B, Caceres M J, Carrillo J A and Vecil F 2009 J. Comput. Phys. 228 6553
[15] Smirnov S 2003 "Physical Modeling of Electron Transport in Strained Silicon and Silicon-Germanium", Ph. D. dissertation (Wien: Fakultät für Elektrotechnik und Informationstechnik)
[16] Esseni D, Palestri P and Selmi L 2011 Nanoscale MOS Transistors (New York: Cambridge University Press) pp. 348-358
[17] Esseni D 2004 IEEE Trans. Electron Dev. 51 394
[18] Damayanthi P, Joshi R P and McAdoo J A 1999 J. Appl. Phys. 86 5060
[19] Ruch J G 1972 Appl. Phys. Lett. 20 246
[20] Dutta P S, Bhat H L and Kumar V 1997 J. Appl. Phys. 81 5821
[21] Lundstrom M S 1997 IEEE Electron Dev. Lett. 18 361
[1] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[2] Heterogeneous integration of GaSb layer on (100) Si substrate by ion-slicing technique
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), Zheng-Hao Shen(沈正皓), Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Jin Li(李进), Min Liao(廖敏), and Yi-Chun Zhou(周益春). Chin. Phys. B, 2022, 31(7): 076103.
[3] Wet etching and passivation of GaSb-based very long wavelength infrared detectors
Xue-Yue Xu(许雪月), Jun-Kai Jiang(蒋俊锴), Wei-Qiang Chen(陈伟强), Su-Ning Cui(崔素宁), Wen-Guang Zhou(周文广), Nong Li(李农), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Dong-Wei Jiang(蒋洞微), Dong-Hai Wu(吴东海), Hong-Yue Hao(郝宏玥), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(6): 068503.
[4] DC and analog/RF performance of C-shaped pocket TFET (CSP-TFET) with fully overlapping gate
Zi-Xin Chen(陈子馨), Wei-Jing Liu(刘伟景), Jiang-Nan Liu(刘江南), Qiu-Hui Wang(王秋蕙), Xu-Guo Zhang(章徐国), Jie Xu(许洁), Qing-Hua Li(李清华), Wei Bai(白伟), and Xiao-Dong Tang(唐晓东). Chin. Phys. B, 2022, 31(5): 058501.
[5] Interface effect on superlattice quality and optical properties of InAs/GaSb type-II superlattices grown by molecular beam epitaxy
Zhaojun Liu(刘昭君), Lian-Qing Zhu(祝连庆), Xian-Tong Zheng(郑显通), Yuan Liu(柳渊), Li-Dan Lu(鹿利单), and Dong-Liang Zhang(张东亮). Chin. Phys. B, 2022, 31(12): 128503.
[6] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[7] Group velocity matters for accurate prediction of phonon-limited carrier mobility
Qiao-Lin Yang(杨巧林), Hui-Xiong Deng(邓惠雄), Su-Huai Wei(魏苏淮), and Jun-Wei Luo(骆军委). Chin. Phys. B, 2021, 30(8): 087201.
[8] First-principles analysis of phonon thermal transport properties of two-dimensional WS2/WSe2 heterostructures
Zheng Chang(常征), Kunpeng Yuan(苑昆鹏), Zhehao Sun(孙哲浩), Xiaoliang Zhang(张晓亮), Yufei Gao(高宇飞), Xiaojing Gong(弓晓晶), and Dawei Tang(唐大伟). Chin. Phys. B, 2021, 30(3): 034401.
[9] Growth of high quality InSb thin films on GaAs substrates by molecular beam epitaxy method with AlInSb/GaSb as compound buffer layers
Yong Li(李勇), Xiao-Ming Li(李晓明), Rui-Ting Hao(郝瑞亭), Jie Guo(郭杰), Yu Zhuang(庄玉), Su-Ning Cui(崔素宁), Guo-Shuai Wei(魏国帅), Xiao-Le Ma(马晓乐), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川), and Yao Wang(王耀). Chin. Phys. B, 2021, 30(2): 028504.
[10] A method to extend wavelength into middle-wavelength infrared based on InAsSb/(Al)GaSb interband transition quantum well infrared photodetector
Xuan-Zhang Li(李炫璋), Ling Sun(孙令), Jin-Lei Lu(鲁金蕾), Jie Liu(刘洁), Chen Yue(岳琛), Li-Li Xie(谢莉莉), Wen-Xin Wang(王文新), Hong Chen(陈弘), Hai-Qiang Jia(贾海强), Lu Wang(王禄). Chin. Phys. B, 2020, 29(3): 038504.
[11] Short-wavelength infrared InAs/GaSb superlattice hole avalanche photodiode
Jia-Feng Liu(刘家丰), Ning-Tao Zhang(张宁涛), Yan Teng(滕), Xiu-Jun Hao(郝修军), Yu Zhao(赵宇), Ying Chen(陈影), He Zhu(朱赫), Hong Zhu(朱虹), Qi-Hua Wu(吴启花), Xin Li(李欣), Bai-Le Chen(陈佰乐)§, and Yong Huang(黄勇). Chin. Phys. B, 2020, 29(11): 117301.
[12] Mechanism of free electron concentration saturation phenomenon in Te-GaSb single crystal
Ding Yu(余丁), Guiying Shen(沈桂英), Hui Xie(谢辉), Jingming Liu(刘京明), Jing Sun(孙静), Youwen Zhao(赵有文). Chin. Phys. B, 2019, 28(5): 057102.
[13] High quality 2-μm GaSb-based optically pumped semiconductor disk laser grown by molecular beam epitaxy
Jin-Ming Shang(尚金铭), Jian Feng(冯健), Cheng-Ao Yang(杨成奥), Sheng-Wen Xie(谢圣文), Yi Zhang(张一), Cun-Zhu Tong(佟存柱), Yu Zhang(张宇), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 034202.
[14] High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector
Zhi Jiang(蒋志), Yao-Yao Sun(孙姚耀), Chun-Yan Guo(郭春妍), Yue-Xi Lv(吕粤希), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 038504.
[15] A review on MBE-grown HgCdSe infrared materials on GaSb (211)B substrates
Z K Zhang, W W Pan, J L Liu, W Lei. Chin. Phys. B, 2019, 28(1): 018103.
No Suggested Reading articles found!