Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(4): 046201    DOI: 10.1088/1674-1056/28/4/046201
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films

Zhao-Ming Yang(杨朝明)1,2, Kun Zhang(张坤)1, Nan Qiu(裘南)1, Hai-Bin Zhang(张海斌)2, Yuan Wang(汪渊)1, Jian Chen(陈坚)3
1 Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China;
2 Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China;
3 Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, China
Abstract  

It is widely accepted that helium (He) bubbles can prevent dislocations from moving and causing hardening and embrittlement of the material. However, He can affect the mechanical properties of materials in various ways. In this work, ultrafine nanocrystal high entropy oxide (HEO) films with He implantation are prepared by using a radio frequency (RF) reactive magnetron sputtering system to investigate the effects of He bubbles located at grain boundary on the mechanical properties of the films. The mechanical properties of the HEO films are investigated systematically via nanoindentation measurements. The results indicate that the grain boundary cavities induced by He implantation can degrade the hardness, the elastic modulus, and the creep resistance of the HEO films. The mechanical properties of the HEO films are sensitive to the interaction between the He bubbles and the dominating defects.

Keywords:  helium accumulation      grain boundaries      mechanical properties      high-entropy oxides  
Received:  11 December 2018      Revised:  03 February 2019      Accepted manuscript online: 
PACS:  62.23.-c (Structural classes of nanoscale systems)  
  81.07.-b (Nanoscale materials and structures: fabrication and characterization)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11775150 and 11505121).

Corresponding Authors:  Yuan Wang, Jian Chen     E-mail:  wyuan@scu.edu.cn;j.chen@seu.edu.cn

Cite this article: 

Zhao-Ming Yang(杨朝明), Kun Zhang(张坤), Nan Qiu(裘南), Hai-Bin Zhang(张海斌), Yuan Wang(汪渊), Jian Chen(陈坚) Effects of helium implantation on mechanical properties of (Al0.31Cr0.20Fe0.14Ni0.35)O high entropy oxide films 2019 Chin. Phys. B 28 046201

[1] Huang P K, Yeh J W, Shun T T and Chen S K 2004 Adv. Eng. Mater. 6 74
[2] Kumar N A P K, Li C, Leonard K J, Bei H and Zinkle S J 2016 Acta Mater. 113 230
[3] Qiu X W, Zhang Y P, He L and Liu C G 2013 J. Alloys Compd. 549 195
[4] Rost C M, Sachet E, Borman T, Moballegh A, Dickey E C, Hou D, Jones J L, Curtarolo S and Maria J P 2015 Nat. Commun. 6 8485
[5] Berardan D, Meena A K, Franger S, Herrero C and Dragoe N 2017 J. Alloys Compd. 704 693
[6] Sarkar A, Velasco L, Wang D, Wang Q, Talasila G, de Biasi L, Kubel C, Brezesinski T, Bhattacharya S S, Hahn H and Breitung B 2018 Nat. Commun. 9 3400
[7] Qiu N, Chen H, Yang Z, Sun S, Wang Y and Cui Y 2019 J. Alloys Compd. 777 767
[8] An, G, Wynn A P, Handley C M and Freeman C L 2018 Acta Mater. 146 119
[9] Lin M I, Tsai M H, Shen W J and Yeh J W 2010 Thin Solid Films 518 2732
[10] Lu C, Niu L, Chen N, Jin K, Yang T, Xiu P, Zhang Y, Gao F, Bei H, Shi S, He M R, Robertson I M, Weber W J and Wang L 2016 Nat. Commun. 7 13564
[11] Sun S, Qiu N, Zhang K, He P, Ma Y, Gou F and Wang Y 2019 Scr. Mater. 161 40
[12] Wang H, Ren F, Tang J, Qin W, Hu L, Dong L, Yang B, Cai G and Jiang C 2018 Acta Mater. 144 691
[13] Tan L, Stoller R E, Field K G, Yang Y, Nam H, Morgan D, Wirth B D, Gussev M N and Busby J T 2016 JOM 68 517
[14] Smith R W, Geng W T, Geller C B, Wu R and Freeman A J 2000 Scr. Mater. 43 957
[15] Chen D, Tong Y, Li H, Wang J, Zhao Y L, Hu A and Kai J J 2018 J. Nucl. Mater. 501 208
[16] Chen D, Tong Y, Wang J, Han B, Zhao Y L, He F and Kai J J 2018 J. Nucl. Mater. 510 187
[17] Wei T, Zhu H, Ionescu M, Dayal P, Davis J, Carr D, Harrison R and Edwards L 2015 J. Nucl. Mater. 459 284
[18] Hofmann F, Nguyen-Manh D, Gilbert M R, Beck C E, Eliason J K, Maznev A A, Liu W, Armstrong D E J, Nelson K A and Dudarev S L 2015 Acta Mater. 89 352
[19] Chen X, Chen Y, Shi Y and Yang B 2018 Ann. Nucl. Energy 120 835
[20] Li J, Wang Z L and Hufnagel T C 2002 Phys. Rev. B 65 144201
[21] Callisti M, Karlik M and Polcar T 2016 J. Nucl. Mater. 473 18
[22] Bartůněk V, Poryvai A and Ulbrich P 2017 J. Fluorine Chem. 200 142
[23] Tjong S C and Chen H 2004 Mater. Sci. Eng.: R: Rep. 45 1
[24] Chokshi C A 1993 Mater. Sci. Eng. A 166 119
[25] Andrievskii R A 2010 Phys. Met. & Metallogr. 110 229
[26] Wang X X, Niu L L and Wang S 2017 J. Nucl. Mater. 487 158
[27] Suzudo T and Yamaguchi M 2015 J. Nucl. Mater. 465 695
[28] Chen Z, Niu L L, Wang Z, Tian L, Kecskes L, Zhu K and Wei Q 2018 Acta Mater. 147 100
[29] Saha R and Nix W D 2002 Acta Mater. 50 23
[30] Pharr G M, Oliver W C and Brotzen F R 1992 J. Mater. Res. 7 613
[31] Kaur N and Kaur D 2014 Surf. Coat. Technol. 260 260
[32] Zheng H, Liu S, Yu H B, Wang L B, Liu C Z and Shi L Q 2005 Mater. Lett. 59 1071
[33] Cheng G J, Shi L Q, Zhou X S, Liang J H, Wang W D, Long X G, Yang B F and Peng S M 2015 J. Nucl. Mater. 466 615
[34] Lao Y, Niu W, Shi Y, Du H, Zhang H, Hu S and Wang Y 2018 J. Alloys Compd. 739 401
[35] Patel K H and Rawal S K 2016 Thin Solid Films 620 175
[36] Wei Q M, Li N, Mara N, Nastasi M and Misra A 2011 Acta Mater. 59 6331
[37] Sanders P G, Eastman J A and Weertman J R 1997 Acta Mater. 45 4019
[38] Paneto F J, Pereira J L, Lima J O, Jesus E J, Silva L A, Sousa Lima E, Cabral R F and Santos C 2015 Int. J. Refract. Met. Hard Mater. 48 365
[39] Babu P S, Jha R, Guzman M, Sundararajan G and Agarwal A 2016 Mater. Sci. Eng. A 658 415
[40] Norton F H 1936 J. Am. Ceram. Soc. 19 129
[41] Fantozzi G, Chevalier J, Olagnon C and Chermant J L 2000 Comprehensive Composite Materials 31 115
[42] Hasselman D P H and Venkateswaran A 1983 J. Mater. Sci. 18 161
[1] Mechanical enhancement and weakening in Mo6S6 nanowire by twisting
Ke Xu(徐克), Yanwen Lin(林演文), Qiao Shi(石桥), Yuequn Fu(付越群), Yi Yang(杨毅),Zhisen Zhang(张志森), and Jianyang Wu(吴建洋). Chin. Phys. B, 2023, 32(4): 046204.
[2] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[3] Molecular dynamics simulations of mechanical properties of epoxy-amine: Cross-linker type and degree of conversion effects
Yongqin Zhang(张永钦), Hua Yang(杨华), Yaguang Sun(孙亚光),Xiangrui Zheng(郑香蕊), and Yafang Guo(郭雅芳). Chin. Phys. B, 2022, 31(6): 064209.
[4] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
[5] Spin and spin-orbit coupling effects in nickel-based superalloys: A first-principles study on Ni3Al doped with Ta/W/Re
Liping Liu(刘立平), Jin Cao(曹晋), Wei Guo(郭伟), and Chongyu Wang(王崇愚). Chin. Phys. B, 2022, 31(1): 016105.
[6] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[7] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[8] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[9] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[10] Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation
Xue-Fei Liu(刘雪飞), Zi-Jiang Luo(罗子江), Xun Zhou(周勋), Jie-Min Wei(魏节敏), Yi Wang(王一), Xiang Guo(郭祥), Bing Lv(吕兵), Zhao Ding(丁召). Chin. Phys. B, 2019, 28(8): 086105.
[11] Theoretical study of overstretching DNA-RNA hybrid duplex
Dong-Ni Yang(杨东尼), Zhen-Sheng Zhong(钟振声), Wen-Zhao Liu(刘文钊), Thitima Rujiralai, Jie Ma(马杰). Chin. Phys. B, 2019, 28(6): 068701.
[12] Physical properties of B4N4-I and B4N4-Ⅱ: First-principles study
Zhenyang Ma(马振洋), Peng Wang(王鹏), Fang Yan(阎芳), Chunlei Shi(史春蕾), Yi Tian(田毅). Chin. Phys. B, 2019, 28(3): 036101.
[13] Spectra properties of Yb3+, Er3+: Sc2SiO5 crystal
Yanyan Xue(薛艳艳), Lihe Zheng(郑丽和), Dapeng Jiang(姜大朋), Qinglin Sai(赛青林), Liangbi Su(苏良碧), Jun Xu(徐军). Chin. Phys. B, 2019, 28(3): 037802.
[14] Structural, vibrational, optical, photoluminescence, thermal, dielectric, and mechanical studies on zinc (tris) thiourea sulfate single crystal: A noticeable effect of organic dye
Mohd Shkir, V Ganesh, S AlFaify, I S Yahia, Mohd Anis. Chin. Phys. B, 2018, 27(5): 054216.
[15] Effect of P impurity on mechanical properties of NiAlΣ5 grain boundary: From perspectives of stress and energy
Xue-Lan Hu(胡雪兰), Ruo-Xi Zhao(赵若汐), Jiang-Ge Deng(邓江革), Yan-Min Hu(胡艳敏), Qing-Gong Song(宋庆功). Chin. Phys. B, 2018, 27(3): 037105.
No Suggested Reading articles found!