Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 037803    DOI: 10.1088/1674-1056/28/3/037803
Special Issue: SPECIAL TOPIC — Photodetector: Materials, physics, and applications
SPECIAL TOPIC—Photodetector: Materials, physics, and applications Prev   Next  

Efficient doping modulation of monolayer WS2 for optoelectronic applications

Xinli Ma(马新莉), Rongjie Zhang(张荣杰), Chunhua An(安春华), Sen Wu(吴森), Xiaodong Hu(胡晓东), Jing Liu(刘晶)
State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
Abstract  

Transition metal dichalcogenides (TMDCs) belong to a subgroup of two-dimensional (2D) materials which usually possess thickness-dependent band structures and semiconducting properties. Therefore, for TMDCs to be widely used in electronic and optoelectronic applications, two critical issues need to be addressed, which are thickness-controllable fabrication and doping modulation of TMDCs. In this work, we successfully obtained monolayer WS2 and achieved its efficient doping by chemical vapor deposition and chemical doping, respectively. The n- and p-type dopings of the monolayer WS2 were achieved by drop coating electron donor and acceptor solutions of triphenylphosphine (PPh3) and gold chloride (AuCl3), respectively, on the surface, which donates and captures electrons to/from the WS2 surface through charge transfer, respectively. Both doping effects were investigated in terms of the electrical properties of the fabricated field effect transistors. After chemical doping, the calculated mobility and density of electrons/holes are around 74.6/39.5 cm2·V-1·s-1 and 1.0×1012/4.2×1011 cm-2, respectively. Moreover, we fabricated a lateral WS2 p-n homojunction consisting of non-doped n-type and p-doped p-type regions, which showed great potential for photodetection with a response time of 1.5 s and responsivity of 5.8 A/W at VG=0 V and VD=1 V under 532 nm light illumination.

Keywords:  two-dimensional materials      tungsten disulfide      chemical doping      homojunction      photodetector  
Received:  28 November 2018      Revised:  27 December 2018      Accepted manuscript online: 
PACS:  78.20.Jq (Electro-optical effects)  
  42.79.Hp (Optical processors, correlators, and modulators)  
  42.70.Gi (Light-sensitive materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 21405109) and Seed Foundation of State Key Laboratory of Precision Measurement Technology and Instruments, China (Grant No. 1710).

Corresponding Authors:  Jing Liu     E-mail:  jingliu_1112@tju.edu.cn

Cite this article: 

Xinli Ma(马新莉), Rongjie Zhang(张荣杰), Chunhua An(安春华), Sen Wu(吴森), Xiaodong Hu(胡晓东), Jing Liu(刘晶) Efficient doping modulation of monolayer WS2 for optoelectronic applications 2019 Chin. Phys. B 28 037803

[1] Tedstone A A, Lewis D J and O'Brien P 2016 Chem. Mater. 28 1965
[2] Mak K F, He K, Shan J and Heinz T F 2012 Nat. Nanotechnol. 7 494
[3] Zhan Y, Liu Z, Najmaei S, Ajayan P M and Lou J 2012 Small 8 966
[4] Gu P, Zhang K, Feng Y, Wang F, Miao Y, Han Y and Zhang H 2016 Acta Phys. Sin. 65 018102 (in Chinese)
[5] Wang W, Kang Z, Song Q, Wang X, Deng J, Ding X and Che J 2018 Acta Phys. Sin. 67 240601
[6] Zeng F, Zhang W and Tang B 2015 Chin. Phys. B 24 097103
[7] Tongay S, Fan W, Kang J, Park J, Koldemir U, Suh J, Narang D S, Liu K, Ji J, Li J, Sinclair R and Wu J 2014 Nano Lett. 14 3185
[8] Wei X, Yan F, Shen C, Lv Q and Wang K 2017 Chin. Phys. B 26 038504
[9] Zhang X and Li Q 2016 Chin. Phys. B 25 117103
[10] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042
[11] Zeng H, Dai J, Yao W, Xiao D and Cui X 2012 Nat. Nanotechnol. 7 490
[12] Gao Y, Liu Z, Sun D M, Huang L, Ma L P, Yin L C, Ma T, Zhang Z, Ma X L, Peng L M, Cheng H M and Ren W 2015 Nat. Commun. 6 8569
[13] Manzeli S, Ovchinnikov D, Pasquier D, Yazyev O V and Kis A 2017 Nat. Rev. Mater. 2 17033
[14] Li X and Zhu H W 2015 J. Materiomics 1 33
[15] Shi Y, Li H and Li L J 2015 Chem. Soc. Rev. 44 2744
[16] Sim D M, Kim M, Yim S, Choi M J, Choi J, Yoo S and Jung Y S 2015 ACS Nano. 9 12115
[17] Kang D H, Kim M S, Shim J, Jeon J, Park H Y, Jung W S, Yu H Y, Pang C H, L S and Park J H 2015 Adv. Funct. Mater. 25 4219
[18] Li Z, Hu Y, Li Y and Fang Z 2017 Chin. Phys. B 26 036802
[19] Georgiou T, Yang H, Jalil R, Chapman J, Novoselov K S and Mishchenko A 2014 Dalt. Trans. 43 10388
[20] Yue Y, Chen J C, Zhang Y, Ding S S, Zhao F, Wang Y, Zhang D, Li R J, Dong H, Hu W, Feng Y and Feng W 2018 ACS. Appl. Mater. Interfaces. 10 22435
[21] Cong C, Shang J, Wang Y and Yu T 2018 Adv. Opt. Mater. 6 1700767
[22] Jo S H, Kang D H, Shim J, Jeon J, Jeon M H, Yoo G, Kim J, Lee J, Yeom G Y, Lee S, Yu H Y, Choi C and Park J H 2016 Adv. Mater. 28 4824
[23] Liu X, Qu D, Ryu J, Ahmed F, Yang Z, Lee D and Yoo W J 2016 Adv. Mater. 28 2345
[24] Choi M S, Qu D, Lee D, Liu X, Watanabe K, Taniguchi T and Yoo W J 2014 ACS Nano. 8 9332
[25] Zhang Q, Lu J, Wang Z, Dai Z, Zhang Y, Huang F, Bao Q, Duan W, Fuhrer M S and Zheng C 2018 Adv. Opt. Mater. 6 1701347
[26] Lan C, Li C, Yin Y and Liu Y 2015 Nanoscale 7 5974
[27] Wang A X, Kang K, Chen S and Du R 2017 2D. Mater. 4 025093
[28] Fan S, Shen W, An C, Sun Z, Wu S, Xu L, Sun D, Hu X, Zhang D and Liu J 2018 ACS Appl. Mater. Interfaces. 10 26533
[29] Zhang R, Xie Z, An C, Fan S, Zhang Q, Wu S, Xu L, Hu X, Zhang D, Sun D, Chen J and Liu J 2018 ACS Appl. Mater. Interfaces. 10 27840
[30] Kim M S, Yun S J, Lee Y, Seo C, Han G H, Kim K K, Lee Y H and Kim J 2016 ACS Nano. 10 2399
[31] Thangaraja A, Shinde S M, Kalita Golap and Tanemura M 2015 Mater. Lett. 156 156
[32] Cong C, Shang J, Wu X, Cao B, Peimyoo N, Qiu C, Sun L and Yu T 2014 Adv. Opt. Mater. 2 131
[33] Feng S, Yang R, Jia Z, Xiang J, Wen F, Nie C M A, Zhao Z, Xu B, Tao C, Tian Y and Liu Z 2017 ACS Appl. Mater. Interfaces. 9 34071
[34] Yang W, Shang J, Wang J, Shen X, Cao B, Peimyoo N, Zou C, Chen Y, Wang Y, Cong C, Huang W and Yu T 2016 Nano Lett. 16 1560
[35] Zhang S, Hill H M, Moudgil K, Richter C A, Hight Walker A R, Barlow S, Marder S R, Hacker C A and Pookpanratana S J 2018 Adv. Mater. 30 1802991
[36] Peimyoo N, Yang W, Shang J, Shen X, Wang Y and Yu T 2014 ACS Nano. 8 11320
[37] Tang B, Yu Z G, Huang L, Chai J, Wong S L, Deng J, Yang W, Gong H, Wang S, Ang K and Zhang Y 2018 ACS Nano. 12 2506
[38] Cao Q, Dai Y, Xu J, Chen L, Zhu H, Sun Q and Zhang D W 2017 ACS Appl. Mater. Interfaces. 9 18215
[39] Xin W, Li X, He X, Su B, Jiang X, Huang K, Zhou X, Liu Z and Tian J 2018 Adv. Mater. 30 1704653
[40] Yin Z, Li H, Li H, Jiang L, Shi Y M, Sun Y H, Lu G, Zhang Q, Chen X D and Zhang H 2012 ACS Nano. 6 74
[41] Zhang Z, Kang Z, Liao Q, Zhang X and Zhang Y 2017 Chin. Phys. B. 26 118102
[42] Zhou C, Zhao Y, Raju S, Wang Y, Lin Z, Chan M and Chai Y 2016 Adv. Mater. 26 4223
[1] High-performance extended short-wavelength infrared PBn photodetectors based on InAs/GaSb/AlSb superlattices
Junkai Jiang(蒋俊锴), Faran Chang(常发冉), Wenguang Zhou(周文广), Nong Li(李农), Weiqiang Chen(陈伟强), Dongwei Jiang(蒋洞微), Hongyue Hao(郝宏玥), Guowei Wang(王国伟), Donghai Wu(吴东海), Yingqiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2023, 32(3): 038503.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] A self-driven photodetector based on a SnS2/WS2 van der Waals heterojunction with an Al2O3 capping layer
Hsiang-Chun Wang(王祥骏), Yuheng Lin(林钰恒), Xiao Liu(刘潇), Xuanhua Deng(邓煊华),Jianwei Ben(贲建伟), Wenjie Yu(俞文杰), Deliang Zhu(朱德亮), and Xinke Liu(刘新科). Chin. Phys. B, 2023, 32(1): 018504.
[4] Dramatic reduction in dark current of β-Ga2O3 ultraviolet photodectors via β-(Al0.25Ga0.75)2O3 surface passivation
Jian-Ying Yue(岳建英), Xue-Qiang Ji(季学强), Shan Li(李山), Xiao-Hui Qi(岐晓辉), Pei-Gang Li(李培刚), Zhen-Ping Wu(吴真平), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(1): 016701.
[5] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[6] A 4×4 metal-semiconductor-metal rectangular deep-ultraviolet detector array of Ga2O3 photoconductor with high photo response
Zeng Liu(刘增), Yu-Song Zhi(支钰崧), Mao-Lin Zhang(张茂林), Li-Li Yang(杨莉莉), Shan Li(李山), Zu-Yong Yan(晏祖勇), Shao-Hui Zhang(张少辉), Dao-You Guo(郭道友), Pei-Gang Li(李培刚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(8): 088503.
[7] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[8] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[9] Improving the performance of a GaAs nanowire photodetector using surface plasmon polaritons
Xiaotian Zhu(朱笑天), Bingheng Meng(孟兵恒), Dengkui Wang(王登魁), Xue Chen(陈雪), Lei Liao(廖蕾), Mingming Jiang(姜明明), and Zhipeng Wei(魏志鹏). Chin. Phys. B, 2022, 31(4): 047801.
[10] Graphene-based heterojunction for enhanced photodetectors
Haiting Yao(姚海婷), Xin Guo(郭鑫), Aida Bao(鲍爱达), Haiyang Mao(毛海央),Youchun Ma(马游春), and Xuechao Li(李学超). Chin. Phys. B, 2022, 31(3): 038501.
[11] Facile sensitizing of PbSe film for near-infrared photodetector by microwave plasma processing
Kangyi Zhao(赵康伊), Shuanglong Feng(冯双龙), Chan Yang(杨婵),Jun Shen(申钧), and Yongqi Fu(付永启). Chin. Phys. B, 2022, 31(3): 038504.
[12] A broadband self-powered UV photodetector of a β-Ga2O3/γ-CuI p-n junction
Wei-Ming Sun(孙伟铭), Bing-Yang Sun(孙兵阳), Shan Li(李山), Guo-Liang Ma(麻国梁), Ang Gao(高昂), Wei-Yu Jiang(江为宇), Mao-Lin Zhang(张茂林), Pei-Gang Li(李培刚), Zeng Liu(刘增), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2022, 31(2): 024205.
[13] Recent progress in design of conductive polymers to improve the thermoelectric performance
Zhen Xu (徐真), Hui Li (李慧), and Lidong Chen(陈立东). Chin. Phys. B, 2022, 31(2): 028203.
[14] Anisotropic plasmon dispersion and damping in multilayer 8-Pmmn borophene structures
Kejian Liu(刘可鉴), Jian Li(李健), Qing-Xu Li(李清旭), and Jia-Ji Zhu(朱家骥). Chin. Phys. B, 2022, 31(11): 117303.
[15] Epitaxy of III-nitrides on two-dimensional materials and its applications
Yu Xu(徐俞), Jianfeng Wang(王建峰), Bing Cao(曹冰), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(11): 117702.
No Suggested Reading articles found!