Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 037804    DOI: 10.1088/1674-1056/28/3/037804
Special Issue: TOPICAL REVIEW — Photodetector: Materials, physics, and applications
SPECIAL TOPIC—Recent advances in thermoelectric materials and devices Prev   Next  

Development of small pixel HgCdTe infrared detectors

Ming Liu(刘铭), Cong Wang(王丛), Li-Qing Zhou(周立庆)
North China Research Institute of Electroptics, Beijing 100015, China
Abstract  

After approximately half a century of development, HgCdTe infrared detectors have become the first choice for high performance infrared detectors, which are widely used in various industry sectors, including military tracking, military reconnaissance, infrared guidance, infrared warning, weather forecasting, and resource detection. Further development in infrared applications requires future HgCdTe infrared detectors to exhibit features such as larger focal plane array format and thus higher imaging resolution. An effective approach to develop HgCdTe infrared detectors with a larger array format size is to develop the small pixel technology. In this article, we present a review on the developmental history and current status of small pixel technology for HgCdTe infrared detectors, as well as the main challenges and potential solutions in developing this technology. It is predicted that the pixel size of long-wave HgCdTe infrared detectors can be reduced to 5 μm, while that of mid-wave HgCdTe infrared detectors can be reduced to 3 μm. Although significant progress has been made in this area, the development of small pixel technology for HgCdTe infrared detectors still faces significant challenges such as flip-chip bonding, interconnection, and charge processing capacity of readout circuits. Various approaches have been proposed to address these challenges, including three-dimensional stacking integration and readout circuits based on microelectromechanical systems.

Keywords:  HgCdTe      infrared detector      small size pixel      readout circuit  
Received:  12 September 2018      Revised:  26 November 2018      Accepted manuscript online: 
PACS:  78.30.Fs (III-V and II-VI semiconductors)  
  81.05.Dz (II-VI semiconductors)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.60.Bt (Optoelectronic device characterization, design, and modeling)  
Corresponding Authors:  Ming Liu     E-mail:  kaka_851001@163.com

Cite this article: 

Ming Liu(刘铭), Cong Wang(王丛), Li-Qing Zhou(周立庆) Development of small pixel HgCdTe infrared detectors 2019 Chin. Phys. B 28 037804

[1] Martyniuk P and Antoszewski J 2014 Appl. Phys. Rev. 1 041102
[2] Boyle W S and Smith G E 1970 Bell Syst. Tech. J. 49 587
[3] Manissadjian A, Rubaldo L, Rebeil Y, Kerlain A, Brellier D and Mollard L 2012 Proc. SPIE 8353 835334
[4] Philippe T, Sophie B and Patricia C 2006 Proc. SPIE 6206 82
[5] Reddy M, Peterson J M and Johnson S M 2009 J. Electro. Mater. 38 1764
[6] Lei W, Ren Y L, Madni I and Faraone L 2018 Infrared Phys. & Technol. 92 96
[7] Lei W 2018 J. Nanosci. Nanotechnol. 18 7349
[8] Wen Lei, Jarek Antoszewski and Lorenzo Faraone 2015 Appl. Phys. Rev. 2 041303
[9] Lei W, Gu R J, Antoszewski J, Dell J, Neusser G, Sieger M, Mizaikoff B and Faraone L 2015 J. Electron. Mater. 44 3180
[10] Lei W, Gu R J, Antoszewski J, Dell J and Faraone L 2014 J. Electron. Mater. 43 2788
[11] Driggers R D, Vollmerhausen R, Reynolds J P, Fanning J and Holt G C 2012 Opt. Eng. 51 063202
[12] Alain M, Philippe T, Philippe C and Patricia C 2000 Proc. SPIE 4130 480
[13] Jean-Pierre C 1998 Proc. SPIE 3419 244
[14] Jean-Pierre C, Louis-Pascal A and Philippe M T 1992 Proc. SPIE 1735 62
[15] Bruno F, Philippe C, Nicolas J, Cédric L, et al. 2016 Proc. SPIE 10562 105623Z
[16] Vuillermet M and Pistone F 2007 Proc. SPIE 6737 673713
[17] www.sofradir.com [2018-9-12]
[18] Rogalski A 2011 Infrared Phys. & Technol. 54 136
[19] Edward P S, Le T P, Gregory M V, Elyse N and Michael N 2003 Proc. SPIE 5209 1
[20] Smith E P G, Bornfreund R E, Kasai I, Pham L T and Patten E A 2006 Proc. SPIE 6127 61271F
[21] Jonathan G and Ellie H 2007 Proc. SPIE 6660 66600C
[22] Radford W A, Patten E A, King D F, Pierce G K and Vodicka J 2005 Proc. SPIE 5783 331
[23] Strong R L, Kinch M A and Armstrong J M 2013 J. Elec. Mat. 42 3103
[24] Nicolas Péré-Laperne 2016 Proc. SPIE 9819 981920
[25] Robinson J, Kinch M, Marquis M, Littlejohn D and Jeppson K 2014 Proc. SPIE 9100 91000I
[26] Armstrong J M, Skokan M R, Kinch M A and Luttmer J D 2014 Proc. SPIE 9070 907033
[27] David J, R Kennedy Mc E, Sudesh B and Martin H 2016 Proc. SPIE 9819 98191X
[28] Thorne P, Gordon J, Hipwood L G and Bradford A 2013 Proc. SPIE 8704 87042M-1
[29] R Kennedy Mc Ewen, David J, Sudesh B and Harald W 2015 Proc. SPIE 9451 94512D
[30] National Research Council 2010 Seeing Photons: Progress and Limits of Visible and Infrared Sensor Arrays (Committee on Developments in Detector Technologies, National Research Council)
[31] Schultz K I, Kelly M W, Baker J J, Blackwell M H, Brown M G, Colonero C B, David C L, Tyrrell B M and Wey J R 2014 Linc. Lab. J. 20 36
[32] Kinch M A 2014 Proc. SPIE 9070 907032
[33] Kar-Roy A, Racanelli M, Howard D, Miyagi G, Bowler M, Jordan S, Zhang T and Kreiger W 2010 Proc. SPIE 7660 76603V
[34] Breiter R, Figgemeier H, Lutz H, Wendler J, Rutzinger S and Schallenberg T 2015 Proc. SPIE 9451 945128
[35] Dhar K and Ravi D 2012 Proc. SPIE 8353 835302
[1] High-performance midwavelength infrared detectors based on InAsSb nBn design
Xuan Zhang(张璇), Qing-Xuan Jia(贾庆轩), Ju Sun(孙矩), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2020, 29(6): 068501.
[2] Gradient refractive structured NiCr thin film absorber for pyroelectric infrared detectors
Yunlu Lian(练芸路), He Yu(于贺), Zhiqing Liang(梁志清), Xiang Dong(董翔). Chin. Phys. B, 2019, 28(6): 067801.
[3] High quantum efficiency long-/long-wave dual-color type-Ⅱ InAs/GaSb infrared detector
Zhi Jiang(蒋志), Yao-Yao Sun(孙姚耀), Chun-Yan Guo(郭春妍), Yue-Xi Lv(吕粤希), Hong-Yue Hao(郝宏玥), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2019, 28(3): 038504.
[4] Development of long-wavelength infrared detector and its space-based application requirements
Junku Liu(刘军库), Lin Xiao(肖林), Yang Liu(刘阳), Longfei Cao(曹龙飞), Zhengkun Shen(申正坤). Chin. Phys. B, 2019, 28(2): 028504.
[5] A review on MBE-grown HgCdSe infrared materials on GaSb (211)B substrates
Z K Zhang, W W Pan, J L Liu, W Lei. Chin. Phys. B, 2019, 28(1): 018103.
[6] Optical characterization of defects in narrow-gap HgCdTe for infrared detector applications
Fang-Yu Yue(越方禹), Su-Yu Ma(马骕驭), Jin Hong(洪进), Ping-Xiong Yang(杨平雄), Cheng-Bin Jing(敬承斌), Ye Chen(陈晔), Jun-Hao Chu(褚君浩). Chin. Phys. B, 2019, 28(1): 017104.
[7] Surface plasmon-enhanced dual-band infrared absorber for VOx-based microbolometer application
Qi Li(李琦), Bing-qiang Yu(于兵强), Zhao-feng Li(李兆峰), Xiao-feng Wang(王晓峰), Zi-chen Zhang(张紫辰), Ling-feng Pan(潘岭峰). Chin. Phys. B, 2017, 26(8): 085202.
[8] The determination of the x value in doped Hg1-xCdxTe by transmission spectra
Yue Fang-Yu(越方禹), Chen Lu(陈璐), Li Ya-Wei(李亚巍), Sun Lin(孙琳), Yang Ping-Xiong(杨平雄), and Chu Jun-Hao(褚君浩) . Chin. Phys. B, 2012, 21(1): 017804.
[9] Influence of annealing conditions on impurity species in arsenic-doped HgCdTe grown by molecular beam epitaxy
Yue Fang-Yu(越方禹), Chen Lu(陈璐), Li Ya-Wei(李亚巍), Hu Zhi-Gao(胡志高), Sun Lin(孙琳), Yang Ping-Xiong(杨平雄), and Chu Jun-Hao(褚君浩). Chin. Phys. B, 2010, 19(11): 117106.
[10] Thermal and mechanical characterizations of a substrate-free focal plane array
Cheng Teng(程腾), Zhang Qing-Chuan(张青川), Chen Da-Peng(陈大鹏), Shi Hai-Tao(史海涛), Gao Jie(高杰), Qian Jian(钱剑), and Wu Xiao-Ping(伍小平). Chin. Phys. B, 2010, 19(1): 010701.
No Suggested Reading articles found!