Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 038202    DOI: 10.1088/1674-1056/ac21c6

A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives

Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华)
Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
Abstract  Based on density functional theory (DFT) and time-dependent density functional theory (TD-DFT), the effects of substituent on the excited-state intramolecular proton transfer (ESIPT) process and photophysical properties of 2-(2'-hydroxyphenyl)-4-chloromethylthiazole (HCT) are studied. The electron-donating group (CH3, OH) and electron-withdrawing group (CF3, CHO) are introduced to analyze the changes of intramolecular H-bond, the frontier molecular orbitals, the absorption/fluorescence spectra, and the energy barrier of ESIPT process. The calculation results indicate that electron-donating group strengthens the intramolecular H-bond in the S1 state, and leads to an easier ESIPT process. The electron-withdrawing group weakens the corresponding H-bond and makes ESIPT process a little harder. Different substituents also affect the photophysical properties of HCT. The electron-withdrawing group (CF3, CHO) has a little effect on electronic spectra. The electron-donating group (CH3, OH) red-shifts both the absorption and fluorescence emission peaks of HCT, respectively, which causes the Stokes shift to increase.
Keywords:  excited-state intramolecular proton transfer (ESIPT)      TD-DFT      substitution  
Received:  15 May 2021      Revised:  15 May 2021      Accepted manuscript online:  27 August 2021
PACS:  82.39.Jn (Charge (electron, proton) transfer in biological systems) (Time-dependent density functional theory) (Ultrafast dynamics; charge transfer)  
Corresponding Authors:  Shen-Yang Su     E-mail:

Cite this article: 

Shen-Yang Su(苏申阳), Xiu-Ning Liang(梁秀宁), and Hua Fang(方华) A DFT/TD-DFT study of effect of different substituent on ESIPT fluorescence features of 2-(2'-hydroxyphenyl)-4-chloro- methylthiazole derivatives 2022 Chin. Phys. B 31 038202

[1] Horke D A, Watte H M, Smith A D, Jager E, Springate E, Alexander O, Cacho C, Chapman R T and Minns R S 2016 Phys. Rev. Lett. 117 163002
[2] Dommett M, Rivera M and Crespo-Otero R 2017 J. Phys. Chem. Lett. 8 6148
[3] Zhou P W and Han K L 2018 Acc. Chem. Res. 51 1681
[4] Chipem F A S, Mishra A and Krishnamoorthy G 2012 Phys. Chem. Chem. Phys. 14 8775
[5] Zhou H Q, Li L, Zhao Y, Wang H G and Zheng Z 2019 Spectrochim. Acta, Part A 208 32
[6] Li C Z, Ma C, Li D L and Liu Y F 2016 J. Lumin. 172 29
[7] Weller A 1956 Zeitschrift für Elektrochemie 60 1144
[8] Peng X J, Wu Y K, Fan J L, Tian M Z and Han K L 2005 J. Org. Chem. 70 10524
[9] Wu J S, Liu W M, Ge J C, Zhang H Y and Wang P F 2011 Chem. Soc. Rev. 40 3483
[10] Heller A and Williams 1970 J. Phys. Chem. 74 4473
[11] Parthenopoulos D A, McMorrow D P and Kasha M 1991 J. Phys. Chem. 95 2668
[12] Kim J S and Quang D T 2007 Chem. Rev. 107 3780
[13] Park S, Kwon J E, Kim S H, Seo J, Chung K, Park S Y, Jang D J, Medina B M, Gierschner J and Park S Y 2009 J. Am. Chem. Soc. 131 14043
[14] Sedgwick A C, Dou W T, Jiao J B, Wu L, Williams G T, Jenkins A T A, Bull S D, Sessler J L, He X P and James T D 2018 J. Am. Chem. Soc. 140 14267
[15] Sedgwick A C, Wu L, Han H H, Bull S D, He X P, James T D, Sessler J L, Tang B Z, Tian H and Yoon J 2018 Chem. Soc. Rev. 47 8842
[16] Tang K C, Chang M J, Lin T Y, Pan H A, Fang T C, Chen K Y, Hung W Y, Hsu Y H and Chou P T 2011 J. Am. Chem. Soc. 133 17738
[17] Sun C F, Li H, Yin H, Li Y Z and Shi Y 2018 J. Mol. Liq. 269 650
[18] Tang Z, Wei H W and Zhou P W 2020 J. Mol. Liq. 301 112415
[19] Han J H, Cao B F, Li Y, Zhou Q, Sun C F, Li B, Yin H and Shi Y 2020 Spectrochim. Acta A 231 118086
[20] Yordanov D, Deneva V, Georgiev A, Crochet A, Fromm K M and Antonov L 2020 Spectrochim. Acta Part A 237 118416
[21] Zhang N N, Liu D B, Chen W F, Liu X and Yan J Y 2020 Comput. Theor. Chem. 1185 112898
[22] Qi Y T, Wang Y, Tang Z, Liu J Y, Hou Y M, Gao Z Q, Tian J and Fei X 2020 J. Mol. Liq. 314 113614
[23] Cao B F, Han J H, Zhou Q, Sun C F, Li Y, Li B, Yin H and Shi Y 2020 J. Mol. Liq. 303 112627
[24] Jia L F and Liu Y F 2020 Spectrochim. Acta Part A 242 118719
[25] Yang D P, Jia M, Zhang Q L and Wang Y S 2020 J. Lumin. 219 116913
[26] Watwiangham A, Roongcharoen T and Kungwan N 2020 J. Photochem. Photobio. A 389 112267
[27] Ma Y Z, Yang Y F, Lan R F and Li Y Q 2017 J. Phys. Chem. C 121 14779
[28] Takagi K, Yamada Y, Fukuda R, Ehara M and Takeuchi D 2018 New J. Chem. 42 5923
[29] Song Y Z, Liu S S, Lu J J, Zhang H, Zhang C Z and Du J 2019 Chin. Phys. B 28 093102
[30] Zhang X, Han J H, Li Y, Sun C F, Su X, Shi Y and Yin H 2020 Chin. Phys. B 29 038201
[31] Zhang N N, Liu G J, Yan J Y, Zhang T T and Liu X 2020 Dyes Pigm. 175 108128
[32] Kim B Y, Kim H S and Helal A 2015 Sensors Actuat. B Chem. 206 430
[33] Lim C, An M, Seo H, Huh J H, Pandith A, Helal A and Kim H S 2017 Sensors Actuat. B Chem. 241 789
[34] Helal A, Kim S H and Kim H S 2010 Tetrahedron 66 9925
[35] Helal A, Kim S H and Kim H S 2013 Tetrahedron 69 6095
[36] Helal A, Kim S B and Kim H S 2011 Bull. Kor. Chem. Soc. 32 3123
[37] Seo H, An M, Kim B Y, Choi J H, Helal A and Kim H S 2017 Tetrahedron 73 4684
[38] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Rev. D.01 (Gaussian, Inc., Wallingford, 2009)
[39] Becke A D 1988 Phys. Rev. A 38 3098
[40] Stephens P J, Devlin F J, Chabalowski C F and Frisch M J 1994 J. Phys. Chem. 98 11623
[41] Perdew J P 1991 Electronic structure of solids' 91, eds:Ziesche P and Eschrig H (Berlin:Akademie Verlag)
[42] Cancés E, Mennucci B and Tomasi J 1997 J. Chem. Phys. 107 3032
[43] Cossi M, Barone V, Mennucci B and Tomasi J 1998 Chem. Phys. Lett. 286 253
[44] Mennucci B and Tomasi J 1997 J. Chem. Phys. 106 5151
[45] Lu T and Chen F W 2012 J. Comput. Chem. 33 580
[46] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. Model. 14 33
[47] Liang X N and Fang H 2021 Photochem. Photobio. Sci. 20 533
[48] Zhao G J and Han K L 2008 Biophys. J. 94 38
[49] Zhao J F, Yao H B, Liu J Y and Hoffmann M R 2015 J. Phys. Chem. A 119 681
[50] Yu F B, Li P, Wang B S and Han K L 2013 J. Am. Chem. Soc. 135 7674
[51] Bader R F W and Essén H 1984 J. Chem. Phys. 80 1943
[52] Stasyuk A J, Cyranski M K, Gryko D T and Solá M 2015 J. Chem. Theory Comput. 11 1046
[53] Johnson E R, Keinan S, Sánchez P M, GarcíaJ C, Cohen A J and Yang W 2010 J. Am. Chem. Soc. 132 6498
[54] García J C, Johnson E R, Keinan S, Chaudret R, Piquemal J P, Beratan D N and Yang W T 2011 J. Chem. Theory Comput. 7 625
[55] Zhao G J, Northrop B H, Han K L and Stang P J 2010 J. Phys. Chem. A 114 9007
[56] Zhao X H, Liu Y F, Zhou L C, Li Y Z and Chen M D 2010 J. Lumin. 130 1431
[57] Zhao G J and Han K L 2012 Acc. Chem. Res. 45 404
[58] Zhao G J, Liu J Y, Zhou L C and Han K L 2007 J. Phys. Chem. B 111 8940
[1] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[2] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[3] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[4] Enhancement of hydrogenation kinetics and thermodynamic properties of ZrCo1-xCrx (x= 0-0.1) alloys for hydrogen storage
Linling Luo(罗林龄), Xiaoqiu Ye(叶小球), Guanghui Zhang(张光辉), Huaqin Kou(寇化秦), Renjin Xiong(熊仁金), Ge Sang(桑革), Ronghai Yu(于荣海), Dongliang Zhao(赵栋梁). Chin. Phys. B, 2020, 29(8): 088801.
[5] Effect of isotope on state-to-state dynamics for reactive collision reactions O(3P)+H2+→OH++H and O(3P)+H2+→OH+H+ in ground state 12A" and first excited 12A' potential energy surfaces
Juan Zhao(赵娟), Ting Xu(许婷), Lu-Lu Zhang(张路路), Li-Fei Wang(王立飞). Chin. Phys. B, 2020, 29(2): 023105.
[6] Structural and electrical transport properties of Cu-doped Fe1 -xCuxSe single crystals
He Li(李贺), Ming-Wei Ma(马明伟), Shao-Bo Liu(刘少博), Fang Zhou(周放), and Xiao-Li Dong(董晓莉). Chin. Phys. B, 2020, 29(12): 127404.
[7] Structural model of substitutional sulfur in diamond
Hongyu Yu(于洪雨), Nan Gao(高楠), Hongdong Li(李红东), Xuri Huang(黄旭日), Defang Duan(段德芳), Kuo Bao(包括), Mingfeng Zhu(朱明枫), Bingbing Liu(刘冰冰), Tian Cui(崔田). Chin. Phys. B, 2019, 28(8): 088102.
[8] Realization of low-energy type-Ⅱ Dirac fermions in (Ir1-xPtx)Te2 superconductors
Bin-Bin Fu(付彬彬), Chang-Jiang Yi(伊长江), Zhi-Jun Wang(王志俊), Meng Yang(杨萌), Bai-Qing Lv(吕佰晴), Xin Gao(高鑫), Man Li(李满), Yao-Bo Huang(黄耀波), Hong-Ming Weng(翁红明), You-Guo Shi(石友国), Tian Qian(钱天), Hong Ding(丁洪). Chin. Phys. B, 2019, 28(3): 037103.
[9] Influence of Tb on easy magnetization direction and magnetostriction of PrFe1.9 alloy
Chang-Xuan He(何昌璇), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), Cai-Yan Lu(陆彩燕), Ze-Ping Guo(郭泽平). Chin. Phys. B, 2019, 28(11): 117501.
[10] Efficient image encryption scheme with synchronous substitution and diffusion based on double S-boxes
Xuan-Ping Zhang(张选平), Rui Guo(郭瑞), Heng-Wei Chen(陈恒伟), Zhong-Meng Zhao(赵仲孟), Jia-Yin Wang(王嘉寅). Chin. Phys. B, 2018, 27(8): 080701.
[11] Antiferromagnetic–ferromagnetic transition in zigzag graphene nanoribbons induced by substitutional doping
Shenyuan Yang(杨身园), Jing Li(李静), Shu-Shen Li(李树深). Chin. Phys. B, 2018, 27(11): 117102.
[12] Precisely tuning Ge substitution for efficient solution-processed Cu2ZnSn(S, Se)4 solar cells
Xinshou Wang(王新收), Dongxing Kou(寇东星), Wenhui Zhou(周文辉), Zhengji Zhou(周正基), Qingwen Tian(田庆文), Yuena Meng(孟月娜), Sixin Wu(武四新). Chin. Phys. B, 2018, 27(1): 018809.
[13] Substitution priority of Eu2+ in multi-cation compound Sr0.8Ca0.2Al2Si2O8 and energy transfer
Zhi-Ping Yang(杨志平), Zhen-Ling Li(李振玲), Zhi-Jun Wang(王志军), Pan-Lai Li(李盼来), Miao-Miao Tian(田苗苗), Jin-Ge Cheng(程金阁), Chao Wang(王超). Chin. Phys. B, 2018, 27(1): 017802.
[14] Observation of selective surface element substitution in FeTe0.5Se0.5 superconductor thin film exposed to ambient air bysynchrotron radiation spectroscopy
Nian Zhang(张念), Chen Liu(刘晨), Jia-Li Zhao(赵佳丽), Tao Lei(雷涛), Jia-Ou Wang(王嘉鸥), Hai-Jie Qian(钱海杰), Rui Wu(吴蕊), Lei Yan(颜雷), Hai-Zhong Guo(郭海中), Kurash Ibrahim(奎热西). Chin. Phys. B, 2016, 25(9): 097402.
[15] Quantitative determination of anti-structured defects applied to alloys of a wide chemical range
Jing Zhang(张静), Zheng Chen(陈铮), Yongxin Wang(王永欣), Yanli Lu(卢艳丽). Chin. Phys. B, 2016, 25(11): 116102.
No Suggested Reading articles found!