CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Negative differential resistance and quantum oscillations in FeSb2 with embedded antimony |
Fangdong Tang(汤方栋)1,2, Qianheng Du(杜乾衡)3,4, Cedomir Petrovic3,4, Wei Zhang(张威)1, Mingquan He(何明全)5, Liyuan Zhang(张立源)2 |
1 Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-nano Devices, Renmin University of China, Beijing 100872, China;
2 Department of Physics, Southern University of Science and Technology, and Shenzhen Institute for Quantum Science and Engineering, Shenzhen 518055, China;
3 Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA;
4 Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, New York 11790, USA;
5 Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University, Chongqing 401331, China |
|
|
Abstract We present a systematical study on single crystalline FeSb2 using electrical transport and magnetic torque measurements at low temperatures. Nonlinear magnetic field dependence of Hall resistivity demonstrates a multi-carrier transport instinct of the electronic transport. Current-controlled negative differential resistance (CC-NDR) observed in current-voltage characteristics below~7 K is closely associated with the intrinsic transition~5 K of FeSb2, which is, however, mediated by extrinsic current-induced Joule heating effect. The antimony crystallized in a preferred orientation within the FeSb2 lattice in the high-temperature synthesis process leaves its fingerprint in the de Haas-Van Alphen (dHvA) oscillations, and results in the regular angular dependence of the oscillating frequencies. Nevertheless, possible existence of intrinsic non-trivial states cannot be completely ruled out. Our findings call for further theoretical and experimental studies to explore novel physics on flux-free grown FeSb2 crystals.
|
Received: 22 December 2018
Revised: 23 January 2019
Accepted manuscript online:
|
PACS:
|
71.27.+a
|
(Strongly correlated electron systems; heavy fermions)
|
|
71.28.+d
|
(Narrow-band systems; intermediate-valence solids)
|
|
72.20.My
|
(Galvanomagnetic and other magnetotransport effects)
|
|
Fund: Project supported by Guangdong Innovative and Entrepreneurial Research Team Program, China (Grant No. 2016ZT06D348), the National Natural Science Foundation of China (Grant No. 11874193), and the Shenzhen Fundamental Subject Research Program, China (Grant Nos. JCYJ20170817110751776 and JCYJ20170307105434022). The work at Brookhaven is supported by the US Department of Energy, Office of Basic Energy Sciences as part of the Computational Material Science Program (material synthesis). |
Corresponding Authors:
Liyuan Zhang
E-mail: zhangly@sustc.edu.cn
|
Cite this article:
Fangdong Tang(汤方栋), Qianheng Du(杜乾衡), Cedomir Petrovic, Wei Zhang(张威), Mingquan He(何明全), Liyuan Zhang(张立源) Negative differential resistance and quantum oscillations in FeSb2 with embedded antimony 2019 Chin. Phys. B 28 037104
|
[1] |
Bentien A, Johnsen S, Madsen G K H, Iversen B B and Steglich F 2007 Europhys. Lett. 80 17008
|
[2] |
Takahashi H, Okazaki R, Ishiwata S, Taniguchi H, Okutani A, Hagiwara M and Terasaki I 2016 Nat. Commun. 7 12732
|
[3] |
Dzero M, Sun K, Galitski V and Coleman P 2010 Phys. Rev. Lett. 104 106408
|
[4] |
Fisk Z, Sarrao J L, Thompson J D, Mandrus D, Hundley M F, Miglori A, Bucher B, Schlesinger Z, Aeppli G, Bucher E, DiTusa J F, Oglesby C S, Ott H R, Canfield P C and Brown S E 1995 Physica B: Condens. Matter 206-207 798
|
[5] |
Kasaya M, Iga F, Takigawa M and Kasuya T 1985 J. Magn. Magn. Mater. 47-48 429
|
[6] |
Hundley M F, Canfield P C, Thompson J D, Fisk Z and Lawrence J M 1990 Phys. Rev. B 42 6842
|
[7] |
Appli G and Fisk Z 1992 Comments Condens. Matter Phys. 16 155
|
[8] |
Schlesinger Z, Fisk Z, Zhang H T, Maple M B, DiTusa J and Aeppli G 1993 Phys. Rev. Lett. 71 1748
|
[9] |
Fang Y, Ran S, Xie W, Wang S, Meng Y S and Maple M B 2018 Proc. Natl. Acad. Sci. 115 8558
|
[10] |
Nishino Y, Kato M, Asano S, Soda K, Hayasaki M and Mizutani U 1997 Phys. Rev. Lett. 79 1909
|
[11] |
Petrovic C, Kim J W, Bud'ko S L, Goldman A I, Canfield P C, Choe W and Miller G J 2003 Phys. Rev. B 67 155205
|
[12] |
Petrovic C, Lee Y, Vogt T, Lazarov N, Bud'ko S and Canfield P 2005 Phys. Rev. B 72 045103
|
[13] |
Perucchi A, Degiorgi L, Hu R, Petrovic C and Mitrović V F 2006 Eur. Phys. J. B 54 175
|
[14] |
Lukoyanov A V, Mazurenko V V, Anisimov V I, Sigrist M and Rice T M 2006 Eur. Phys. J. B 53 205
|
[15] |
Takahashi H, Okazaki R, Yasui Y and Terasaki I 2011 Phys. Rev. B 84 205215
|
[16] |
Duong A T, Rhim S H, Shin Y, Nguyen V Q and Cho S 2015 Appl. Phys. Lett. 106 032106
|
[17] |
Jie Q, Hu R, Bozin E, Llobet A, Zaliznyak I, Petrovic C and Li Q 2012 Phys. Rev. B 86 115121
|
[18] |
Hu R, Thomas K J, Lee Y, Vogt T, Choi E S, Mitrović V F, Hermann R P, Grandjean F, Canfield P C, Kim J W, Goldman A I and Petrovic C 2008 Phys. Rev. B 77 085212
|
[19] |
Bentien A, Madsen G K H, Johnsen S and Iversen B B 2006 Phys. Rev. B 74 205105
|
[20] |
Tomczak J M, Haule K, Miyake T, Georges A and Kotliar G 2010 Phys. Rev. B 82 085104
|
[21] |
Battiato M, Tomczak J M, Zhong Z and Held K 2015 Phys. Rev. Lett. 114 236603
|
[22] |
Du X, Tsai S W, Maslov D L and Hebard A F 2005 Phys. Rev. Lett. 94 166601
|
[23] |
Li C Z, Li J G, Wang L X, Zhang L, Zhang J M, Yu D and Liao Z M 2016 ACS Nano 10 6020
|
[24] |
Mani A, Janaki J, Satya A T, Geetha Kumary T and Bharathi A 2012 J. Phys. Condens. Matter 24 075601
|
[25] |
Kawabata A 1980 Solid State Commun. 34 431
|
[26] |
Mani R G, Ghenim L and Choi J B 1991 Solid State Commun. 79 693
|
[27] |
Morris R C, Christopher J E and Coleman R V 1969 Phys. Rev. 184 565
|
[28] |
Kim J, Ko C, Frenzel A, Ramanathan S and Hoffman J E 2010 Appl. Phys. Lett. 96 213106
|
[29] |
Pickett M D, Borghetti J, Yang J J, Medeiros-Ribeiro G and Williams R S 2011 Adv. Mater. 23 1730
|
[30] |
Chudnovskii F A, Odynets L L, Pergament A L and Stefanovich G B 1996 J. Solid State Chem. 122 95
|
[31] |
Kim D J, Grant T and Fisk Z 2012 Phys. Rev. Lett. 109 096601
|
[32] |
Hanias M, Anagnostopoulos A N, Kambas K and Spyridelis J 1991 Phys. Rev. B 43 4135
|
[33] |
Hanias M P and Anagnostopoulos A N 1993 Phys. Rev. B 47 4261
|
[34] |
Wolgast S, Kurdak Ç, Sun K, Allen J W, Kim D J and Fisk Z 2013 Phys. Rev. B 88 180405
|
[35] |
Li G, Xiang Z, Yu F, Asaba T, Lawson B, Cai P, Tinsman C, Berkley A, Wolgast S, Eo Y S, Kim D J, Kurdak C, Allen J W, Sun K, Chen X H, Wang Y Y, Fisk Z and Li L 2014 Science 346 1208
|
[36] |
Tan B S, Hsu Y T, Zeng B, Hatnean M C, Harrison N, Zhu Z, Hartstein M, Kiourlappou M, Srivastava A, Johannes M D, Murphy T P, Park J H, Balicas L, Lonzarich G G, Balakrishnan G and Sebastian S E 2015 Science 349 287
|
[37] |
Xiang Z, Kasahara Y, Asaba T, Lawson B, Tinsman C, Chen L, Sugimoto K, Kawaguchi S, Sato Y, Li G, Yao S, Chen Y L, Iga F, Singleton J, Matsuda Y and Li L 2018 Science 362 65
|
[38] |
Thomas S M, Ding X, Ronning F, Zapf V, Thompson J D, Fisk Z, Xia J and Rosa P F S 2018 arXiv: 1806.00117
|
[39] |
Murakawa H, Bahramy M S, Tokunaga M, Kohama Y, Bell C, Kaneko Y, Nagaosa N, Hwang H Y and Tokura Y 2013 Science 342 1490
|
[40] |
Liu Y, Yuan X, Zhang C, Jin Z, Narayan A, Luo C, Chen Z, Yang L, Zou J, Wu X, Sanvito S, Xia Z, Li L, Wang Z and Xiu F 2016 Nat. Commun. 7 12516
|
[41] |
Windmiller L R 1966 Phys. Rev. 149 472
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|