Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 030702    DOI: 10.1088/1674-1056/28/3/030702
GENERAL Prev   Next  

Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center

Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓)
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  

Diamond negatively charged nitrogen-vacancy (NV-) centers provide an opportunity for the measurement of the Meissner effect on extremely small samples in a diamond anvil cell (DAC) due to their high sensitivity in detecting the tiny change of magnetic field. We report on the variation of magnetic field distribution in a DAC as a sample transforms from normal to superconducting state by using finite element analysis. The results show that the magnetic flux density has the largest change on the sidewall of the sample, where NV- centers can detect the strongest signal variation of the magnetic field. In addition, we study the effect of magnetic coil placement on the magnetic field variation. It is found that the optimal position for the coil to generate the greatest change in magnetic field strength is at the place as close to the sample as possible.

Keywords:  negatively charged nitrogen-vacancy (NV-) centers      diamond anvil cell      superconductivity      magnetic field detection  
Received:  28 November 2018      Revised:  09 January 2019      Accepted manuscript online: 
PACS:  07.07.Df (Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)  
  07.55.Ge (Magnetometers for magnetic field measurements)  
  74.20.-z (Theories and models of superconducting state)  
  02.70.Dh (Finite-element and Galerkin methods)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2018YFA0305900) and the National Natural Science Foundation of China (Grant Nos. 11774126, 11674404, and 51772125).

Corresponding Authors:  Yonghao Han     E-mail:  hanyh@jlu.edu.cn

Cite this article: 

Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓) Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center 2019 Chin. Phys. B 28 030702

[1] Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
[2] Li Y, Hao J, Liu H, Li Y and Ma Y 2014 J. Chem. Phys. 140 174712
[3] Troyan I, Gavriliuk A, Rüffer R, Chumakov A, Mironovich A, Lyubutin I, Perekalin D, Drozdov A P and Eremets M I 2016 Science 351 1303
[4] Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
[5] Yao Y and Tse J S 2018 Chemistry 24 1769
[6] Pickett W E 2007 J. Supercond. Novel Magn. 19 291
[7] Takano Y, Takeya H, Fujii H, Kumakura H, Hatano T, Togano K, Kito H and Ihara H 2001 Appl. Phys. Lett. 78 2914
[8] Waxman A, Schlussel Y, Groswasser D, Acosta V M, Bouchard L S, Budker D and Folman R 2014 Phys. Rev. B 89 054509
[9] Yang J, Peng G, Han Y H and Gao C X 2011 AIP Adv. 1 032116
[10] Huang X W, Gao C X, Han Y H, Li M, He C, Hao A, Zhang D, Yu C, Zou G and Ma Y 2007 Appl. Phys. Lett. 90 242102
[11] Huang X W, Gao C X, Li M, He C, Hao A, Zhang D, Yu C, Wang Y, Sang C, Cui X and Zou G T 2007 J. Appl. Phys. 101 064904
[12] Bouchard L S, Acosta V M, Bauch E and Budker D 2011 New J. Phys. 13 025017
[13] Jiang F J, Ye J F, Jiao Z, Jiang J, Ma K, Yan X H and Lv H J 2018 Chin. Phys. B 27 057602
[14] Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C and Prawer S 2014 Phys. Rev. Lett. 112 047601
[15] Hall L T, Kehayias P, Simpson D A, Jarmola A, Stacey A, Budker D and Hollenberg L C 2016 Nat. Commun. 7 10211
[16] Steinert S, Dolde F, Neumann P, Aird A, Naydenov B, Balasubramanian G, Jelezko F and Wrachtrup J 2010 Rev. Sci. Instrum. 81 043705
[17] Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F and Wrachtrup J 2008 Nature 455 648
[18] Hong S, Grinolds M S, Pham L M, Le Sage D, Luan L, Walsworth R L and Yacoby A 2013 MRS Bull. 38 155
[19] Maertz B J, Wijnheijmer A P, Fuchs G D, Nowakowski M E and Awschalom D D 2010 Appl. Phys. Lett. 96 092504
[20] Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
[21] Wickenbrock A, Zheng H, Bougas L, Leefer N, Afach S, Jarmola A, Acosta V M and Budker D 2016 Appl. Phys. Lett. 109 053505
[22] Yue D H, Ji T T, Qin T R, Wang J, Liu C L, Jiao H, Zhao L, Han Y H and Gao C X 2018 Appl. Phys. Lett. 112 081901
[23] Joshi K R, Nusran N M, Cho K, Tanatar M A, Meier W R, Bud'ko S L, Canfield P C and Prozorov R 2019 Phys. Rev. Applied 11 014035
[1] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[4] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[5] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[6] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[7] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[8] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[9] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[10] Surface electron doping induced double gap opening in Td-WTe2
Qi-Yuan Li(李启远), Yang-Yang Lv(吕洋洋), Yong-Jie Xu(徐永杰), Li Zhu(朱立), Wei-Min Zhao(赵伟民), Yanbin Chen(陈延彬), and Shao-Chun Li(李绍春). Chin. Phys. B, 2022, 31(6): 066802.
[11] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[12] Superconductivity in CuIr2-xAlxTe4 telluride chalcogenides
Dong Yan(严冬), Lingyong Zeng(曾令勇), Yijie Zeng(曾宜杰), Yishi Lin(林一石), Junjie Yin(殷俊杰), Meng Wang(王猛), Yihua Wang(王熠华), Daoxin Yao(姚道新), and Huixia Luo(罗惠霞). Chin. Phys. B, 2022, 31(3): 037406.
[13] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[14] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[15] Synthesis and superconductivity in yttrium superhydrides under high pressure
Yingying Wang(王莹莹), Kui Wang(王奎), Yao Sun(孙尧), Liang Ma(马良), Yanchao Wang(王彦超), Bo Zou(邹勃), Guangtao Liu(刘广韬), Mi Zhou(周密), and Hongbo Wang(王洪波). Chin. Phys. B, 2022, 31(10): 106201.
No Suggested Reading articles found!