|
|
Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center |
Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓) |
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China |
|
|
Abstract Diamond negatively charged nitrogen-vacancy (NV-) centers provide an opportunity for the measurement of the Meissner effect on extremely small samples in a diamond anvil cell (DAC) due to their high sensitivity in detecting the tiny change of magnetic field. We report on the variation of magnetic field distribution in a DAC as a sample transforms from normal to superconducting state by using finite element analysis. The results show that the magnetic flux density has the largest change on the sidewall of the sample, where NV- centers can detect the strongest signal variation of the magnetic field. In addition, we study the effect of magnetic coil placement on the magnetic field variation. It is found that the optimal position for the coil to generate the greatest change in magnetic field strength is at the place as close to the sample as possible.
|
Received: 28 November 2018
Revised: 09 January 2019
Accepted manuscript online:
|
PACS:
|
07.07.Df
|
(Sensors (chemical, optical, electrical, movement, gas, etc.); remote sensing)
|
|
07.55.Ge
|
(Magnetometers for magnetic field measurements)
|
|
74.20.-z
|
(Theories and models of superconducting state)
|
|
02.70.Dh
|
(Finite-element and Galerkin methods)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0305900) and the National Natural Science Foundation of China (Grant Nos. 11774126, 11674404, and 51772125). |
Corresponding Authors:
Yonghao Han
E-mail: hanyh@jlu.edu.cn
|
Cite this article:
Lin Zhao(赵琳), Donghui Yue(岳冬辉), Cailong Liu(刘才龙), Min Wang(王敏), Yonghao Han(韩永昊), Chunxiao Gao(高春晓) Magnetic field analysis in a diamond anvil cell for Meissner effect measurement by using the diamond NV- center 2019 Chin. Phys. B 28 030702
|
[1] |
Ashcroft N W 2004 Phys. Rev. Lett. 92 187002
|
[2] |
Li Y, Hao J, Liu H, Li Y and Ma Y 2014 J. Chem. Phys. 140 174712
|
[3] |
Troyan I, Gavriliuk A, Rüffer R, Chumakov A, Mironovich A, Lyubutin I, Perekalin D, Drozdov A P and Eremets M I 2016 Science 351 1303
|
[4] |
Drozdov A P, Eremets M I, Troyan I A, Ksenofontov V and Shylin S I 2015 Nature 525 73
|
[5] |
Yao Y and Tse J S 2018 Chemistry 24 1769
|
[6] |
Pickett W E 2007 J. Supercond. Novel Magn. 19 291
|
[7] |
Takano Y, Takeya H, Fujii H, Kumakura H, Hatano T, Togano K, Kito H and Ihara H 2001 Appl. Phys. Lett. 78 2914
|
[8] |
Waxman A, Schlussel Y, Groswasser D, Acosta V M, Bouchard L S, Budker D and Folman R 2014 Phys. Rev. B 89 054509
|
[9] |
Yang J, Peng G, Han Y H and Gao C X 2011 AIP Adv. 1 032116
|
[10] |
Huang X W, Gao C X, Han Y H, Li M, He C, Hao A, Zhang D, Yu C, Zou G and Ma Y 2007 Appl. Phys. Lett. 90 242102
|
[11] |
Huang X W, Gao C X, Li M, He C, Hao A, Zhang D, Yu C, Wang Y, Sang C, Cui X and Zou G T 2007 J. Appl. Phys. 101 064904
|
[12] |
Bouchard L S, Acosta V M, Bauch E and Budker D 2011 New J. Phys. 13 025017
|
[13] |
Jiang F J, Ye J F, Jiao Z, Jiang J, Ma K, Yan X H and Lv H J 2018 Chin. Phys. B 27 057602
|
[14] |
Doherty M W, Struzhkin V V, Simpson D A, McGuinness L P, Meng Y, Stacey A, Karle T J, Hemley R J, Manson N B, Hollenberg L C and Prawer S 2014 Phys. Rev. Lett. 112 047601
|
[15] |
Hall L T, Kehayias P, Simpson D A, Jarmola A, Stacey A, Budker D and Hollenberg L C 2016 Nat. Commun. 7 10211
|
[16] |
Steinert S, Dolde F, Neumann P, Aird A, Naydenov B, Balasubramanian G, Jelezko F and Wrachtrup J 2010 Rev. Sci. Instrum. 81 043705
|
[17] |
Balasubramanian G, Chan I Y, Kolesov R, Al-Hmoud M, Tisler J, Shin C, Kim C, Wojcik A, Hemmer P R, Krueger A, Hanke T, Leitenstorfer A, Bratschitsch R, Jelezko F and Wrachtrup J 2008 Nature 455 648
|
[18] |
Hong S, Grinolds M S, Pham L M, Le Sage D, Luan L, Walsworth R L and Yacoby A 2013 MRS Bull. 38 155
|
[19] |
Maertz B J, Wijnheijmer A P, Fuchs G D, Nowakowski M E and Awschalom D D 2010 Appl. Phys. Lett. 96 092504
|
[20] |
Maze J R, Stanwix P L, Hodges J S, Hong S, Taylor J M, Cappellaro P, Jiang L, Dutt M V, Togan E, Zibrov A S, Yacoby A, Walsworth R L and Lukin M D 2008 Nature 455 644
|
[21] |
Wickenbrock A, Zheng H, Bougas L, Leefer N, Afach S, Jarmola A, Acosta V M and Budker D 2016 Appl. Phys. Lett. 109 053505
|
[22] |
Yue D H, Ji T T, Qin T R, Wang J, Liu C L, Jiao H, Zhao L, Han Y H and Gao C X 2018 Appl. Phys. Lett. 112 081901
|
[23] |
Joshi K R, Nusran N M, Cho K, Tanatar M A, Meier W R, Bud'ko S L, Canfield P C and Prozorov R 2019 Phys. Rev. Applied 11 014035
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|