ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Comparative investigation of microjetting generated from monocrystalline tin surface and polycrystalline tin surface under plane impact loading |
Shao-Wei Sun(孙少伟)1,3, Guan-Qing Tang(汤观晴)2,3, Ya-Fei Huang(黄亚飞)3, Liang-Zhi Cao(曹良志)1,†, and Xiao-Ping Ouyang(欧阳晓平)1,‡ |
1 School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China; 2 College of Materials Science and Engineering, Hunan University, Changsha 410082, China; 3 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China |
|
|
Abstract With considering the scattering effect of grain boundary and the grain orientation, the molecular dynamics is used for the first time to comparatively investigate microjetting generated by monocrystalline tin surface and polycrystalline tin surface under plane impact loading in this work. The research results show that when the impact velocity is low, the scattering effect of grain boundary and different grain orientations in a polycrystalline tin will cause the sample to melt inhomogeneously, leading the shock wave front to attenuate, meanwhile, the inhomogeneous melting can result in jet deviating. Comparing with monocrystalline tin, the jet head velocity, jet velocity coefficient, and jet mass coefficient of polycrystalline tin at low impact velocity are all low. Moreover, as the impact velocity increases, this influence decreases and the microjetting results of polycrystalline tin and monocrystalline tin tend to be consistent with each other.
|
Received: 11 January 2021
Revised: 01 March 2021
Accepted manuscript online: 16 March 2021
|
PACS:
|
47.11.Mn
|
(Molecular dynamics methods)
|
|
47.40.Nm
|
(Shock wave interactions and shock effects)
|
|
31.15.xv
|
(Molecular dynamics and other numerical methods)
|
|
34.20.Cf
|
(Interatomic potentials and forces)
|
|
Corresponding Authors:
Liang-Zhi Cao, Xiao-Ping Ouyang
E-mail: caolz@mail.xjtu.edu.cn;oyxp2003@aliyun.com
|
Cite this article:
Shao-Wei Sun(孙少伟), Guan-Qing Tang(汤观晴), Ya-Fei Huang(黄亚飞), Liang-Zhi Cao(曹良志), and Xiao-Ping Ouyang(欧阳晓平) Comparative investigation of microjetting generated from monocrystalline tin surface and polycrystalline tin surface under plane impact loading 2021 Chin. Phys. B 30 104701
|
[1] Amouye F A and Niknam A R 2018 J. Appl. Phys. 123 043106 [2] Liu Y and Grieves B 2014 J. Fluids Eng. 136 091202 [3] Durand O and Soulard L 2015 J. Appl. Phys. 117 165903 [4] Monfared S K, Oro D M, Graver M, Hammerberg J E, Lalone B M, Pack C L, Schauer M M, Stevens G D, Stone J B and Turley W D 2014 J. Appl. Phys. 116 063504 [5] Buttler W T, Oró D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B and Terrones G 2012 J. Fluid Mech. 703 60 [6] Dimonte G and Ramaprabhu P 2010 Phys. Fluids 22 014104 [7] Dimonte G, Terrones G, Cherne F J and Ramaprabhu P 2013 J. Appl. Phys. 113 024905 [8] Zellner M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T and Payton J R 2007 J. Appl. Phys. 102 013522 [9] Zellner M B, Mcneil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N and Stevens G D 2008 J. Appl. Phys. 103 113508 [10] Ren G W, Zhang S W, Hong R K, Tang T G and Chen Y T 2016 Chin. Phys. B 25 086202 [11] De Rességuier T, Lescoute E, Sollier A, Prudhomme G and Mercier P 2014 J. Appl. Phys. 115 043525 [12] Chu G B, Xi T, Yu M H, Fan W, Zhao Y Q, Shui M, He W H, Zhang T K, Zhang B, Wu Y C, Zhou W M, Cao L F, Xin J T and Gu Y Q 2018 Rev. Sci. Instrum. 89 115106 [13] Vogan W S, Anderson W W, Grover M, Hammerberg J E, King N S P, Lamoreaux S K, Macrum G, Morley K B, Rigg P A and Stevens G D 2005 J. Appl. Phys. 98 113508 [14] Holtkamp D B, Clark D A, Ferm E N, Gallegos R A, Hammon D, Hemsing W F, Hogan G E, Holmes V H, King N S P, Liljestrand R, Lopez R P, Merrill F E, Morris C L, Morley K B, Murray M M, Pazuchanics P D, Prestridge K P, Quintana J P, Saunders A, Schafer T, Shinas M A and Stacy H L 2004 AIP Conf. Proc. 706 477 [15] Roland C, de Rességuier T, Sollier A, Lescoute E, Soulard L and Loison D 2017 AIP Conf. Proc. 1793 100027 [16] Dyachkov S, Parshikov A and Zhakhovsky V 2017 AIP Conf. Proc. 1793 100024 [17] Soulard L 2008 Eur. Phys. J. D 50 241 [18] Durand O and Soulard L 2017 J. Dynamic Behavior Mater. 3 280 [19] Durand O, Soulard L, Bourasseau E and Filippini G 2016 J. Appl. Phys. 120 045306 [20] Meyers M A 1977 Mater. Sci. Eng. 30 99 [21] Barber J L 2008 Phys. Rev. B 77 144106 [22] Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A and Holian B L 2007 Phys. Rev. Lett. 98 135701 [23] Alder B J and Wainwright T E 1957 J. Chem. Phys. 27 1208 [24] Leimkuhler B and Matthews C 2016 Proc. Roy. Soc. A: Math. Phys. Eng. Sic. 472 20160138 [25] Hansson T, Oostenbrink C and van Gunsteren W 2002 Curr. Opin. Struct. Biol. 12 190 [26] Xiong Q L, Kitamura T and Li Z H 2019 J. Appl. Phys. 125 194302 [27] Rapaport D C 1999 Mol. Dyn. Simul. Comput. Sci. Eng. 1 70 [28] Plimpton S 1995 J. Comput. Phys. 117 1 [29] Vella J R, Chen M, Stillinger F H, Carter E A and Debenedetti P G 2017 Phys. Rev. B 95 064202 [30] Etesami S A, Baskes M I, Laradji M and Asadi E 2018 Acta Mater. 161 320 [31] Ko W S, Kim D H, Kwon Y J and Lee M H 2018 Metals 8 900 [32] Sapozhnikov F A, Ionov G V, Dremov V V, Soulard L and Durand O 2014 J. Phys. Conf. Ser. 500 032017 [33] Daw M S and Baskes M I 1983 Phys. Rev. Lett. 50 1285 [34] Durand O, Jaouen S, Soulard L, Heuzé O and Colombet L 2017 J. Appl. Phys. 122 135107 [35] Wu B, Wu F C, Zhu Y B, Wang P, He A M and Wu H A 2018 AIP Adv. 8 045002 [36] Li B, Zhao F P, Wu H A and Luo S N 2014 J. Appl. Phys. 115 349 [37] Chhabildas L C and Asay J R 1979 J. Appl. Phys. 50 2749 [38] Stukowski A, Bulatov V V and Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007 [39] Asay J R, Mix L P and Perry F C 1976 Appl. Phys. Lett. 29 284 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|