Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 104701    DOI: 10.1088/1674-1056/abeeea
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Comparative investigation of microjetting generated from monocrystalline tin surface and polycrystalline tin surface under plane impact loading

Shao-Wei Sun(孙少伟)1,3, Guan-Qing Tang(汤观晴)2,3, Ya-Fei Huang(黄亚飞)3, Liang-Zhi Cao(曹良志)1,†, and Xiao-Ping Ouyang(欧阳晓平)1,‡
1 School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
2 College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
3 Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999, China
Abstract  With considering the scattering effect of grain boundary and the grain orientation, the molecular dynamics is used for the first time to comparatively investigate microjetting generated by monocrystalline tin surface and polycrystalline tin surface under plane impact loading in this work. The research results show that when the impact velocity is low, the scattering effect of grain boundary and different grain orientations in a polycrystalline tin will cause the sample to melt inhomogeneously, leading the shock wave front to attenuate, meanwhile, the inhomogeneous melting can result in jet deviating. Comparing with monocrystalline tin, the jet head velocity, jet velocity coefficient, and jet mass coefficient of polycrystalline tin at low impact velocity are all low. Moreover, as the impact velocity increases, this influence decreases and the microjetting results of polycrystalline tin and monocrystalline tin tend to be consistent with each other.
Keywords:  molecular dynamics      shock wave      microjetting      monocrystalline tin      polycrystalline tin  
Received:  11 January 2021      Revised:  01 March 2021      Accepted manuscript online:  16 March 2021
PACS:  47.11.Mn (Molecular dynamics methods)  
  47.40.Nm (Shock wave interactions and shock effects)  
  31.15.xv (Molecular dynamics and other numerical methods)  
  34.20.Cf (Interatomic potentials and forces)  
Corresponding Authors:  Liang-Zhi Cao, Xiao-Ping Ouyang     E-mail:  caolz@mail.xjtu.edu.cn;oyxp2003@aliyun.com

Cite this article: 

Shao-Wei Sun(孙少伟), Guan-Qing Tang(汤观晴), Ya-Fei Huang(黄亚飞), Liang-Zhi Cao(曹良志), and Xiao-Ping Ouyang(欧阳晓平) Comparative investigation of microjetting generated from monocrystalline tin surface and polycrystalline tin surface under plane impact loading 2021 Chin. Phys. B 30 104701

[1] Amouye F A and Niknam A R 2018 J. Appl. Phys. 123 043106
[2] Liu Y and Grieves B 2014 J. Fluids Eng. 136 091202
[3] Durand O and Soulard L 2015 J. Appl. Phys. 117 165903
[4] Monfared S K, Oro D M, Graver M, Hammerberg J E, Lalone B M, Pack C L, Schauer M M, Stevens G D, Stone J B and Turley W D 2014 J. Appl. Phys. 116 063504
[5] Buttler W T, Oró D M, Preston D L, Mikaelian K O, Cherne F J, Hixson R S, Mariam F G, Morris C, Stone J B and Terrones G 2012 J. Fluid Mech. 703 60
[6] Dimonte G and Ramaprabhu P 2010 Phys. Fluids 22 014104
[7] Dimonte G, Terrones G, Cherne F J and Ramaprabhu P 2013 J. Appl. Phys. 113 024905
[8] Zellner M B, Grover M, Hammerberg J E, Hixson R S, Iverson A J, Macrum G S, Morley K B, Obst A W, Olson R T and Payton J R 2007 J. Appl. Phys. 102 013522
[9] Zellner M B, Mcneil W V, Hammerberg J E, Hixson R S, Obst A W, Olson R T, Payton J R, Rigg P A, Routley N and Stevens G D 2008 J. Appl. Phys. 103 113508
[10] Ren G W, Zhang S W, Hong R K, Tang T G and Chen Y T 2016 Chin. Phys. B 25 086202
[11] De Rességuier T, Lescoute E, Sollier A, Prudhomme G and Mercier P 2014 J. Appl. Phys. 115 043525
[12] Chu G B, Xi T, Yu M H, Fan W, Zhao Y Q, Shui M, He W H, Zhang T K, Zhang B, Wu Y C, Zhou W M, Cao L F, Xin J T and Gu Y Q 2018 Rev. Sci. Instrum. 89 115106
[13] Vogan W S, Anderson W W, Grover M, Hammerberg J E, King N S P, Lamoreaux S K, Macrum G, Morley K B, Rigg P A and Stevens G D 2005 J. Appl. Phys. 98 113508
[14] Holtkamp D B, Clark D A, Ferm E N, Gallegos R A, Hammon D, Hemsing W F, Hogan G E, Holmes V H, King N S P, Liljestrand R, Lopez R P, Merrill F E, Morris C L, Morley K B, Murray M M, Pazuchanics P D, Prestridge K P, Quintana J P, Saunders A, Schafer T, Shinas M A and Stacy H L 2004 AIP Conf. Proc. 706 477
[15] Roland C, de Rességuier T, Sollier A, Lescoute E, Soulard L and Loison D 2017 AIP Conf. Proc. 1793 100027
[16] Dyachkov S, Parshikov A and Zhakhovsky V 2017 AIP Conf. Proc. 1793 100024
[17] Soulard L 2008 Eur. Phys. J. D 50 241
[18] Durand O and Soulard L 2017 J. Dynamic Behavior Mater. 3 280
[19] Durand O, Soulard L, Bourasseau E and Filippini G 2016 J. Appl. Phys. 120 045306
[20] Meyers M A 1977 Mater. Sci. Eng. 30 99
[21] Barber J L 2008 Phys. Rev. B 77 144106
[22] Kadau K, Germann T C, Lomdahl P S, Albers R C, Wark J S, Higginbotham A and Holian B L 2007 Phys. Rev. Lett. 98 135701
[23] Alder B J and Wainwright T E 1957 J. Chem. Phys. 27 1208
[24] Leimkuhler B and Matthews C 2016 Proc. Roy. Soc. A: Math. Phys. Eng. Sic. 472 20160138
[25] Hansson T, Oostenbrink C and van Gunsteren W 2002 Curr. Opin. Struct. Biol. 12 190
[26] Xiong Q L, Kitamura T and Li Z H 2019 J. Appl. Phys. 125 194302
[27] Rapaport D C 1999 Mol. Dyn. Simul. Comput. Sci. Eng. 1 70
[28] Plimpton S 1995 J. Comput. Phys. 117 1
[29] Vella J R, Chen M, Stillinger F H, Carter E A and Debenedetti P G 2017 Phys. Rev. B 95 064202
[30] Etesami S A, Baskes M I, Laradji M and Asadi E 2018 Acta Mater. 161 320
[31] Ko W S, Kim D H, Kwon Y J and Lee M H 2018 Metals 8 900
[32] Sapozhnikov F A, Ionov G V, Dremov V V, Soulard L and Durand O 2014 J. Phys. Conf. Ser. 500 032017
[33] Daw M S and Baskes M I 1983 Phys. Rev. Lett. 50 1285
[34] Durand O, Jaouen S, Soulard L, Heuzé O and Colombet L 2017 J. Appl. Phys. 122 135107
[35] Wu B, Wu F C, Zhu Y B, Wang P, He A M and Wu H A 2018 AIP Adv. 8 045002
[36] Li B, Zhao F P, Wu H A and Luo S N 2014 J. Appl. Phys. 115 349
[37] Chhabildas L C and Asay J R 1979 J. Appl. Phys. 50 2749
[38] Stukowski A, Bulatov V V and Arsenlis A 2012 Model. Simul. Mater. Sci. Eng. 20 085007
[39] Asay J R, Mix L P and Perry F C 1976 Appl. Phys. Lett. 29 284
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[3] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[4] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[5] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[6] Spatial correlation of irreversible displacement in oscillatory-sheared metallic glasses
Shiheng Cui(崔世恒), Huashan Liu(刘华山), and Hailong Peng(彭海龙). Chin. Phys. B, 2022, 31(8): 086108.
[7] Effect of void size and Mg contents on plastic deformation behaviors of Al-Mg alloy with pre-existing void: Molecular dynamics study
Ning Wei(魏宁), Ai-Qiang Shi(史爱强), Zhi-Hui Li(李志辉), Bing-Xian Ou(区炳显), Si-Han Zhao(赵思涵), and Jun-Hua Zhao(赵军华). Chin. Phys. B, 2022, 31(6): 066203.
[8] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[9] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[10] Impact of thermostat on interfacial thermal conductance prediction from non-equilibrium molecular dynamics simulations
Song Hu(胡松), C Y Zhao(赵长颖), and Xiaokun Gu(顾骁坤). Chin. Phys. B, 2022, 31(5): 056301.
[11] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[12] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[13] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[14] Effect of the number of defect particles on the structure and dispersion relation of a two-dimensional dust lattice system
Rangyue Zhang(张壤月), Guannan Shi(史冠男), Hanyu Tang(唐瀚宇), Yang Liu(刘阳), Yanhong Liu(刘艳红), and Feng Huang(黄峰). Chin. Phys. B, 2022, 31(3): 035204.
[15] Generation of laser-driven flyer dominated by shock-induced shear bands: A molecular dynamics simulation study
Deshen Geng(耿德珅), Danyang Liu(刘丹阳), Jianying Lu(鲁建英), Chao Chen(陈超), Junying Wu(伍俊英), Shuzhou Li(李述周), and Lang Chen(陈朗). Chin. Phys. B, 2022, 31(2): 024101.
No Suggested Reading articles found!