Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 016104    DOI: 10.1088/1674-1056/28/1/016104
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

High-pressure-induced phase transition in cinchomeronic acid polycrystalline form-I

Ting-Ting Yan(颜婷婷)1, Dong-Yang Xi(喜冬阳)2, Jun-Hai Wang(王俊海)3, Xu-Feng Fan(樊旭峰)1, Ye Wan(万晔)2, Li-Xiu Zhang(张丽秀)3, Kai Wang(王凯)4
1 School of Science, Shenyang Jianzhu University, Shenyang 110168, China;
2 School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China;
3 Analysis and Detection Technology Research Center, Shenyang Jianzhu University, Shenyang 110168, China;
4 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Abstract  

Diamond anvil cells combined with Raman spectroscopy and angle-dispersive x-ray diffraction (ADXRD) were used to investigate the compression behavior of cinchomeronic acid (C7H5NO4, CA), a hydrogen-bonded polymorphs. The compression of form-I at approximately 6.5 GPa caused an irreversible phase transition that produced the new polymorph form-Ⅲ. Lattice and internal modes in the Raman spectra were analyzed to determine the modifications in the local environment of CA form-I molecules. The form-Ⅲ was indexed and refined to a low-symmetry triclinic structure with space group P1. The mechanism for the phase transition involved the reconstructions in the hydrogen-bonded networks in CA form-I.

Keywords:  phase transformations      pressure      vibrational spectroscopy      x-ray diffraction  
Received:  07 November 2018      Revised:  08 November 2018      Accepted manuscript online: 
PACS:  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
  82.80.Gk (Analytical methods involving vibrational spectroscopy)  
  61.05.cp (X-ray diffraction)  
  64.70.K (Solid-solid transitions)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11604224, 51805336, and 11774120), the Open Project of State Key Laboratory of Superhard Materials of Jilin University, China (Grant No. 201708), the Natural Science Foundation of Liaoning Province, China (Grant No. 20180550861), the Education Department of Liaoning Province, China (Grant Nos. LJZ2016031 and LJZ2016030), and Shenyang Jianzhu University Discipline Content Education, China (Grant Nos. XKHY2-105 and XKHY2-101).

Corresponding Authors:  Ting-Ting Yan     E-mail:  yantt1120@163.com

Cite this article: 

Ting-Ting Yan(颜婷婷), Dong-Yang Xi(喜冬阳), Jun-Hai Wang(王俊海), Xu-Feng Fan(樊旭峰), Ye Wan(万晔), Li-Xiu Zhang(张丽秀), Kai Wang(王凯) High-pressure-induced phase transition in cinchomeronic acid polycrystalline form-I 2019 Chin. Phys. B 28 016104

[1] McCrone W C 1965 Physics and Chemistry of the Organic Solid State Ⅱ, ed. Fox D, Labes M M and Weissberger A (New York: Interscience) pp. 725-767
[2] Morrow S I 1969 J. Chem. Educ. 46 580
[3] Wöhler F and Liebig J 1832 Ann. Der Pharm. 3 249
[4] David W I, Shankl, K, Pulham C R, Blagden, N, Davey R J and Song M 2005 Angew. Chem. Int. Ed. 44 7032
[5] Gavezzotti A and Filippini G 1995 J. Am. Chem. Soc. 117 12299
[6] Nangia A 2008 Acc. Chem. Res. 41 595
[7] Johnstone R, Lennie A, Parker S, Parsons S, Pidcock E, Richardson P, Warren J and Wood P 2010 CrystEngComm 12 1065
[8] Haleblian J and McCrone W J 1969 Pharm. Sci. 58 911
[9] Yu L, Reutzel S M and Stephenson G A 1998 Pharm. Sci. Technol. Today 1 118
[10] Fabbiani F P A, Allan D R, David W I F, Moggach S A, Parsons S and Pulham C R 2004 CrystEngComm 6 504
[11] Yan T T, Wang K, Duan D F, Tan X, Liu B B and Zou B 2014 RSC Adv. 4 15534
[12] Walker M, Morrison C A, Allan D R, Pulham C R and Marshall W G 2007 Dalton Trans. 20 2014
[13] Yan T T, Xi D Y, Ma Z N, Fan X F and Li Y 2017 J. Phys. Chem. C 121 19365
[14] Allan D R and Clark S J 1999 Phys. Rev. Lett. 82 3464
[15] Yan T T, Xi D Y, Ma Z N, Wang X, Wang Q J and Li Q 2017 RSC Adv. 7 22105
[16] Minkov V S, Goryainov S V, Boldyreva E V and Görbitz C H 2010 J. Raman Spectrosc. 41 1748
[17] Yan T T, Wang K, Tan X, Yang K, Liu B B and Zou B 2014 J. Phys. Chem. C 118 15162
[18] Boldyreva E V, Ahsbahs H, Uchtmann H and Kashcheeva N 2000 High Press. Res. 17 79
[19] Fabbiani F P A and Pulham C R 2006 Chem. Soc. Rev. 35 932
[20] Wang Z and Georgakis C 2017 Aiche J. 63 2796
[21] Okumura T, Ishida M, Takayama K and Otsuka M 2006 J. Pharm. Sci. 95 689
[22] Yan T T, Wang K, Tan X, Liu J, Liu B B and Zou B 2014 J. Phys. Chem. C 118 22960
[23] Laniel D, Downie L E, Smith J S, Savard D, Murugesu M and Desgreniers S 2014 J. Chem. Phys. 141 234506
[24] Griffiths P J 1963 Acta Crystallogr. 19 1074
[25] Takusagawa F, Hirotsu K and Shimada A 1973 Bull. Chem. Soc. Jpn. 46 2669
[26] Braga D, Maini L, Fagnano C, Taddei P, Chierotti M R and Gobettb R 2007 Chem. Eur. J. 13 1222
[27] Karabacak M, Bilgili S and Atac A 2015 Spectrochim. Acta A 135 270
[28] Evans I R, Howard J A K and Evans J S O 2008 CrystEngComm 10 1404
[29] Tong M L, Wang J, Hu S and Batten S R 2005 Inorg. Chem. Commun. 8 48
[30] Senevirathna M K I, Pitigala P, Perera V P S and Tennakone K 2005 Langmuir 21 2997
[31] Errandonea D, Muñoz A and Gonzalez P J 2014 J. Appl. Phys. 115 216101
[32] Chijioke D A, Nellis J W, Soldatov A and Silvera I F 2005 J. Appl. Phys. 98 114905
[33] Park T R, Dreger Z A and Gupta Y M 2004 J. Phys. Chem. B 108 3174
[34] Ciezak J A, Jenkins T A, Liu Z and Hemley R J 2007 J. Phys. Chem. A 111 59
[35] Hamann S D and Linton M 1976 Aust. J. Chem. 29 1641
[36] Lin Y, Ma H W, Matthews C W, Kolb B, Sinogeikin S, Thonhauser T and Mao W L 2012 J. Phys. Chem. C 116 2172
[37] Yan T T, Li S R, Wang K, Tan X, Jiang Z M, Yang K, Liu B B, Zou G T and Zou B 2012 J. Phys. Chem. B 116 9796
[38] Wang K, Liu J, Yang K, Liu B B and Zou B 2014 J. Phys. Chem. C 118 8122
[39] Salinas S R and Nagle J F 1974 Phys. Rev. B 9 4920
[1] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[2] Focused-ion-beam assisted technique for achieving high pressure by uniaxial-pressure devices
Di Liu(刘迪), Xingyu Wang(王兴玉), Zezhong Li(李泽众), Xiaoyan Ma(马肖燕), and Shiliang Li(李世亮). Chin. Phys. B, 2023, 32(4): 047401.
[3] Drift characteristics and the multi-field coupling stress mechanism of the pantograph-catenary arc under low air pressure
Zhilei Xu(许之磊), Guoqiang Gao(高国强), Pengyu Qian(钱鹏宇), Song Xiao(肖嵩), Wenfu Wei(魏文赋), Zefeng Yang(杨泽锋), Keliang Dong(董克亮), Yaguang Ma(马亚光), and Guangning Wu(吴广宁). Chin. Phys. B, 2023, 32(4): 045202.
[4] Linear analysis of plasma pressure-driven mode in reversed shear cylindrical tokamak plasmas
Ding-Zong Zhang(张定宗), Xu-Ming Feng(冯旭铭), Jun Ma(马骏), Wen-Feng Guo(郭文峰), Yan-Qing Huang(黄艳清), and Hong-Bo Liu(刘洪波). Chin. Phys. B, 2023, 32(1): 015201.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[7] Slight Co-doping tuned magnetic and electric properties on cubic BaFeO3 single crystal
Shijun Qin(覃湜俊), Bowen Zhou(周博文), Zhehong Liu(刘哲宏), Xubin Ye(叶旭斌), Xueqiang Zhang(张雪强), Zhao Pan(潘昭), and Youwen Long(龙有文). Chin. Phys. B, 2022, 31(9): 097503.
[8] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[9] Regulation of the intermittent release of giant unilamellar vesicles under osmotic pressure
Qi Zhou(周琪), Ping Wang(王平), Bei-Bei Ma(马贝贝), Zhong-Ying Jiang(蒋中英), and Tao Zhu(朱涛). Chin. Phys. B, 2022, 31(9): 098701.
[10] Effect of pressure evolution on the formation enhancement in dual interacting vortex rings
Jianing Dong(董佳宁), Yang Xiang(向阳), Hong Liu(刘洪), and Suyang Qin(秦苏洋). Chin. Phys. B, 2022, 31(8): 084701.
[11] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[12] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Li(2p $\leftarrow$ 2s) + Na(3s) pressure broadening in the far-wing and line-core profiles
F Talbi, N Lamoudi, L Reggami, M T Bouazza, K Alioua, and M Bouledroua. Chin. Phys. B, 2022, 31(7): 073401.
No Suggested Reading articles found!