Li(2p 2s) + Na(3s) pressure broadening in the far-wing and line-core profiles
F Talbi1,2, N Lamoudi1,3, L Reggami1, M T Bouazza1,4,†, K Alioua5, and M Bouledroua2
1 Physics Department, Badji Mokhtar University, B. P. 12, Annaba 23000, Algeria; 2 Laboratoire de Physique des Rayonnements, Badji Mokhtar University, B. P. 12, Annaba 23000, Algeria; 3 Laboratoire d'Etude des Surfaces et Interfaces de la Matière Solide(LESIMS), Badji Mokhtar University, B. P. 12 Annaba 23000, Algeria; 4 Laboratoire LAMA, Laboratoire des Matériaux Avancés(LAMA), Badji Mokhtar University, B. P. 12 Annaba 23000, Algeria; 5 Laboratoire de Physique de la Matière et du Rayonnement LPMR, UniversitéChérif Messaidia, B. P. 1553, Souk-Ahras 41000, Algeria
Abstract This work reports pressure-broadening line-wing and line-core of the lithium Li (2p 2s) resonance line perturbed by ground sodium Na (3s) atoms. In far-wing regions, the calculations are performed quantum-mechanically and are intended to examine the photoabsorption coefficients at diverse temperatures. The results show the existence of three satellites, in the blue wing near the wavelengths 470 nm and in the red wing around 862 nm and 1070 nm. For the line-core region, by adopting the simplified Baranger model, the line-width and line-shift rates are determined, and their variation law with temperature is examined. No published data were found to compare these results with.
(Atomic and molecular data, spectra, and spectralparameters (opacities, rotation constants, line identification, oscillator strengths, gf values, transition probabilities, etc.))
Fund: This work has been realized within the framework of the PNR project 8/423/4388. The authors acknowledge support from the Algerian Ministry of Higher Education and ANDRU.
Corresponding Authors:
M T Bouazza
E-mail: taharbouazza@yahoo.com
Cite this article:
F Talbi, N Lamoudi, L Reggami, M T Bouazza, K Alioua, and M Bouledroua Li(2p 2s) + Na(3s) pressure broadening in the far-wing and line-core profiles 2022 Chin. Phys. B 31 073401
[1] Hawley S L 2001 Proceedings of the 12th Cambridge Workshop on cool Stars, Stellar Systems, and the Sun, July 30-August 3, 2001 (University of Colorado USA) p. 97 [2] Allard N F, Allard F, Hauschildt P H, Kielkopf J F and Machin L 2003 Astronomy & Astrophysics411 L473 [3] Allard N F, Allard F and Kielkopf J F 2005 Astronomy & Astrophysics440 1195 [4] Blank L and Weeks D E 2014 Phys. Rev. A90 022510 [5] Allard N F 2014 Advances in Space Research54 1285 [6] Allard N F, Nakayama A, Stienkemeier F, Kielkopf J F, Guillon G and Viel A 2014 Advances in Space Research54 1290 [7] Zhu C, Babb J F and Dalgarno A 2005 Phys. Rev. A71 052710 [8] Zhu C, Babb J F and Dalgarno A 2006 Phys. Rev. A73 012506 [9] Boutarfa H, Alioua K, Bouledroua M, Allouche A R and Aubert-Frécon M 2012 Phys. Rev. A86 052504 [10] Buchoucha S, Alioua K and Bouledroua M 2017 Chin. Phys. B26 073202 [11] Lamoudi N, Bouledroua M, Alioua K, Allouche A R and Aubert-Frécon M 2013 Phys. Rev. A87 52713 [12] Talbi F, Bouledroua M and Alioua K 2008 Eur. Phys. J D50 141 [13] Lamoudi N, Talbi F, Bouazza M T, Bouledroua M and Alioua K 2019 Chin. Phys. B28 063202 [14] Aubert-Frécon M Private Communication [15] Pauly H 1979 Atomi-Molecule Collision Theory, Bernstein R B Edn. (New York:Plenum press) [16] Marinescu M and Sadeghpour R H 1999 Phys. Rev. A59 390 [17] Schmidt-Mink I, Müller W and Meyer W 1984 Chem. Phys. Lett.112 120 [18] Mabrouk N and Berriche H 2008 J. Phys. B41 155101 [19] Müller W and Meyer W 1984 J. Chem. Phys80 3311 [20] Fedorov D A, Derevianko A and Varganov S A 2014 J. Chem. Phys140 184315 [21] Steinke M, Knöckel H and Tiemann E 2012 Phys. Rev. A85 042720 [22] Engelke F, Ennen G and Meiwes K H 1982 Chem. Phys66 391 [23] Kappes M M, Marti K O, Radi P, Schär M and Schumacher E 1984 Chem. Phys. Lett.107 6 [24] Chu X and Dalgarno A 2002 Phys. Rev. A66 024701 [25] Demtröder W 2006 Atoms, Molecules and Photons (Berlin Heidelberg:Springer-Verlag) [26] Le Roy R J, Dattani N S, Coxon J A, Ross A J, Crozet P and Linton C 2009 J. Chem. Phys131 204309 [27] Schmitt A, Volz U and Schmoranzer H 1997 Proceedings of ICAMDATA (Maryland:Gaithersburg) [28] Volz U and Schmoranzer H 1996 Phys. Scr. TT65 48 [29] Carlsson J and Sturesson L 1989 Z. Phys. D14 281 [30] McAlexander W I, Abraham E R I, Ritchie N W M, Williams C J, Stoof H T C and Hulet R G 1995 Phys. Rev. A51 R871 [31] McAlexander W I, Abraham E R I and Hulet R G 1996 Phys. Rev. A54 R5 [32] Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2014 NIST Atomic Spectra Database (ver. 5.2),[Online].[2015, April 21]. National Institute of Standards and Technology, Gaithersburg, MD. [33] Mason E A and McDaniel E W 1988 Transport Properties of Ions in Gases (New York:Wiley and Sons, Inc.) [34] Allard N F and Kielkopf J F 1982 Rev. Mod.54 1103 [35] Szudy J and Baylis W E 1996 Phys. Rep.266 127 [36] Chung H K, Kirby K and Babb J F 2001 Phys. Rev. A63 032516 [37] Lyyra A M, Sando K M and Kleiber P D 1987 Phys. Rev. A35 915 [38] Baranger M 1958 Phys. Rev.111 481
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.