Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 014207    DOI: 10.1088/1674-1056/28/1/014207
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Mode-locked fiber laser with MoSe2 saturable absorber based on evanescent field

Ren-Li Zhang(张仁栗)1,2, Jun Wang(王俊)1, Xiao-Yan Zhang(张晓艳)1, Jin-Tian Lin(林锦添)3, Xia Li(李夏)1, Pei-Wen Kuan(关珮雯)1, Yan Zhou(周延)4, Mei-Song Liao(廖梅松)1, Wei-Qing Gao(高伟清)5
1 Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 University of Chinese Academy of Sciences, Beijing 100039, China;
3 State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
4 College of Science, Shanghai Institute of Technology, Shanghai 201418, China;
5 School of Electronic Science & Applied Physics, Hefei University of Technology, Hefei 230009, China
Abstract  

An all-fiber mode-locked fiber laser was achieved with a saturable absorber based on a tapered fiber deposited with layered molybdenum selenide (MoSe2). The laser was operated at a central wavelength of 1558.35 nm with an output spectral width of 2.9 nm, and a pulse repetition rate of 16.33 MHz. To the best of our knowledge, this is the first report on mode-locked fiber lasers using MoSe2 saturable absorbers based on tapered fibers.

Keywords:  fiber lasers      mode locking      molybdenum diselenide  
Received:  28 August 2018      Revised:  30 September 2018      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504500), the National Natural Science Foundation of China (Grant Nos. 61475171, 61705244, 61307056, and 61875052), and the Natural Science Foundation of Shanghai, China (Grant Nos. 17ZR1433900 and 17ZR1434200).

Corresponding Authors:  Mei-Song Liao     E-mail:  liaomeisong@siom.ac.cn

Cite this article: 

Ren-Li Zhang(张仁栗), Jun Wang(王俊), Xiao-Yan Zhang(张晓艳), Jin-Tian Lin(林锦添), Xia Li(李夏), Pei-Wen Kuan(关珮雯), Yan Zhou(周延), Mei-Song Liao(廖梅松), Wei-Qing Gao(高伟清) Mode-locked fiber laser with MoSe2 saturable absorber based on evanescent field 2019 Chin. Phys. B 28 014207

[1] Keller U 2003 Nature 424 831
[2] Chong A, Wright L G and Wise F W 2015 Rep. Prog. Phys. 78 113901
[3] Oktem B, Ülgüdür C and Ö F 2010 Nat. Photon. 4 307
[4] Liu X, Cui Y, Han D, Yao X and Sun Z 2015 Sci. Rep. 5 9101
[5] Liu X, Han D, Sun Z, Zeng C, Lu H, Mao D, Cui Y and Wang F 2013 Sci. Rep. 3 2718
[6] Ahmed M H, Latiff A A, Arof H and Harun S W 2016 Appl. Opt. 55 4247
[7] Ilday F Ö, Buckley J, Kuznetsova L and Wise F W 2003 Opt. Express 11 3550
[8] Chong A 2006 Opt. Express 14 10095
[9] Song Wu, Jefferson Strait and Fork R L 1993 Opt. Lett. 18 1444
[10] Ö F and Wise F W 2002 Opt. Lett. 27 1531
[11] Gomes L A, Orsila L, Jouhti T and Okhotnikov O G 2004 IEEE J. Sel. Top. Quantum Electron. 10 129
[12] Keller U 1996 IEEE J. Sel. Top. Quantum Electron. 2 435
[13] Xiao X S 2017 Chin. Phys. B 26 114204
[14] Martinez A and Sun Z 2013 Nat. Photon. 7 842
[15] Liu X, Yao X and Cui Y 2018 Phys. Rev. Lett. 121 023905
[16] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Shen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
[17] Yamashita S and Inoue Y 2004 Opt. Lett. 29 1581
[18] Du J, Wang Q, Jiang G, Xu C, Zhao C, Xiang Y, Chen Y, Wen S and Zhang H 2015 Sci. Rep. 4 6346
[19] Luo Z, Li Y, Zhong M, Huang Y, Wan X, Peng J and Weng J 2015 Photon. Res. 3 A79
[20] Mao D, Wang Y, Ma C, Han L, Jiang B, Gan X, Hua S, Zhang W, Mei T and Zhao J 2015 Sci. Rep. 5 7965
[21] Mao D, She X, Du B, Yang D, Zhang W, Song K, Cui X, Jiang B, Peng T and Zhao J 2016 Sci. Rep. 6 23583
[22] Mao D, Du B, Yang D, Zhang S, Wang Y, Zhang W, She X, Cheng H, Zeng H and Zhao J 2016 Small 12 1489
[23] Zhao C J, Zou Y H, Chen Y, Wang Z T, Lu S B, Zhang H, Wen S C and Tang D Y 2012 Opt. Express 20 27888
[24] Luo Z C, Liu M, Liu H, Zheng X W, Luo A P, Zhao C J, Zhang H, Wen S C and Xu W C 2013 Opt. Lett. 38 5212
[25] Sotor J, Sobon G, Kowalczyk M, Macherzynski W, Paletko P and Abramski K M 2015 Opt. Lett. 40 3885
[26] Park K, Lee J, Lee Y T, Choi W, Lee J H and Song Y 2015 Ann. Phys.-Berlin 527 770
[27] Xin W, Liu Z B, Sheng Q W, Feng M, Huang L G, Wang P, Jiang W S, Xing F, Liu Y G and Tian J G 2014 Opt. Express 22 10239
[28] Xing G, Guo H, Zhang X, Sum T C and Huan C H A 2010 Opt. Express 18 4564
[29] Shi H, Yan R, Bertolazzi S, Brivio J, Gao B, Kis A, Jena D, Xing H G and Huang L 2013 ACS Nano 7 1072
[30] Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319
[31] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[32] Zhang H, Lu S B, Zheng J, Du J, Wen S C, Tang D Y and Loh K P 2014 Opt. Express 22 7249
[33] Khazaeizhad R, Kassani S H, Jeong H, Yeom D I and Oh K 2014 Opt. Express 22 23732
[34] Tian Z, Wu K, Kong L, Yang N, Wang Y, Chen R, Hu W, Xu J and Tang Y 2015 Laser Phys. Lett. 12 065104
[35] Jung M, Lee J, Park J, Koo J, Jhon Y M and Lee J H 2015 Opt. Express 23 19996
[36] Mao D, Zhang S, Wang Y, Gan X, Zhang W, Mei T, Wang Y, Wang Y, Zeng H and Zhao J 2015 Opt. Express 23 27509
[37] Guo B, Yao Y, Yan P, Xu K, Liu J, Wang S and Li Y 2016 IEEE Photon. Technol. Lett. 28 323
[38] Liu M, Luo A, Xu W and Luo Z 2018 Chin. Opt. Lett. 16 020008
[39] Kadir N A A, Ismail E I, Latiff A A, Ahmad H, Arof H and Harun S W 2017 Chin. Phys. Lett. 34 014202
[40] Rusu M, Herda R, Kivistö S and Okhotnikov O G 2006 Opt. Lett. 31 2257
[41] Wang L, Xu P, Li Y, Han J, Guo X, Cui Y, Liu X and Tong L 2018 Sci. Rep. 8 4732
[42] Koo J, Park J, Lee J, Jhon Y M and Lee J H 2016 Opt. Express 24 10575
[43] Ahmad H, Aidit S N, Hassan N A, Ismail M F and Tiu Z C 2016 Opt. Eng. 55 076115
[44] Tiu Z C, Ahmad H, Zarei A and Harun S W 2016 Chin. Opt. Lett. 14 041901
[45] Chen B, Zhang X, Wu K, Wang H, Wang J and Chen J 2015 Opt. Express 23 26723
[46] Gui L, Yang X, Zhao G, Yang X, Xiao X, Zhu J and Yang C 2011 Appl. Opt. 50 110
[47] Xia H D, Li H P, Lan C Y, Li C, Deng G L, Li J F and Liu Y 2015 Chin. Phys. B 24 084206
[48] Wang G 2017 Opt. Laser Technol. 96 307
[49] Liu M, Zheng X W, Qi Y L, Liu H, Luo A P, Luo Z C, Xu W C, Zhao C J and Zhang H 2014 Opt. Express 22 22841
[50] Chen H, Li I L, Ruan S, Guo T and Yan P 2016 Opt. Eng. 55 081318
[51] Mao D, Cui X, Gan X, Li M, Zhang W, Lu H and Zhao J 2018 IEEE J. Sel. Top. Quantum Electron. 24 1100406
[52] Niu K, Sun R, Chen Q, Man B and Zhang H 2018 Photon. Res. 6 72
[1] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[2] Optomechanical-organized multipulse dynamics in ultrafast fiber laser
Lin Huang(黄琳), Yu-Sheng Zhang(张裕生), and Yu-Dong Cui(崔玉栋). Chin. Phys. B, 2021, 30(11): 114203.
[3] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[4] The 2-μm to 6-μm mid-infrared supercontinuum generation in cascaded ZBLAN and As2Se3 step-index fibers
Jinmei Yao(姚金妹), Bin Zhang(张斌), Ke Yin(殷科), Jing Hou(侯静). Chin. Phys. B, 2019, 28(8): 084209.
[5] Monolithic all-fiber mid-infrared supercontinuum source based on a step-index two-mode As2S3 fiber
Jinmei Yao(姚金妹), Bin Zhang(张斌), Jing Hou(侯静). Chin. Phys. B, 2019, 28(6): 064205.
[6] Generation of wide-bandwidth pulse with graphene saturable absorber based on tapered fiber
Ren-Li Zhang(张仁栗), Jun Wang(王俊), Mei-Song Liao(廖梅松), Xia Li(李夏), Pei-Wen Guan(关珮雯), Yin-Yao Liu(刘银垚), Yan Zhou(周延), Wei-Qing Gao(高伟清). Chin. Phys. B, 2019, 28(3): 034203.
[7] Observation of 550 MHz passively harmonic mode-locked pulses at L-band in an Er-doped fiber laser using carbon nanotubes film
Qianqian Huang(黄千千), Chuanhang Zou(邹传杭), Tianxing Wang(王天行), Mohammed Al Araimi, Aleksey Rozhin, Chengbo Mou(牟成博). Chin. Phys. B, 2018, 27(9): 094210.
[8] Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers
Zhi-Chao Luo(罗智超), Meng Liu(刘萌), Ai-Ping Luo(罗爱平), Wen-Cheng Xu(徐文成). Chin. Phys. B, 2018, 27(9): 094215.
[9] Femtosecond Tm-Ho co-doped fiber laser using a bulk-structured Bi2Se3 topological insulator
Jinho Lee(李珍昊), Ju Han Lee(李周翰). Chin. Phys. B, 2018, 27(9): 094219.
[10] Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser
Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜). Chin. Phys. B, 2018, 27(8): 084206.
[11] Sb2Te3 mode-locked ultrafast fiber laser at 1.93 μm
Jintao Wang(王金涛), Jinde Yin(尹金德), Tingchao He(贺廷超), Peiguang Yan(闫培光). Chin. Phys. B, 2018, 27(8): 084214.
[12] Generation and evolution of multiple operation states in passively mode-locked thulium-doped fiber laser by using a graphene-covered-microfiber
Xiao-Fa Wang(王小发), Jun-Hong Zhang(张俊红), Xiao-Ling Peng(彭晓玲), Xue-Feng Mao(毛雪峰). Chin. Phys. B, 2018, 27(8): 084215.
[13] Carboxyl graphene oxide solution saturable absorber for femtosecond mode-locked erbium-doped fiber laser
Rui-dong Lv(吕瑞东), Lu Li(李璐), Yong-gang Wang(王勇刚), Zhen-dong Chen(陈振东), Si-cong Liu(刘思聪), Xi Wang(王茜), Jiang Wang(王江), Yong-fang Li(李永放). Chin. Phys. B, 2018, 27(11): 114214.
[14] Ultrafast interlayer photocarrier transfer in graphene-MoSe2 van der Waals heterostructure
Xin-Wu Zhang(张心悟), Da-Wei He(何大伟), Jia-Qi He(何佳琪), Si-Qi Zhao(赵思淇), Sheng-Cai Hao(郝生财), Yong-Sheng Wang(王永生), Li-Xin Yi(衣立新). Chin. Phys. B, 2017, 26(9): 097202.
[15] Generation of single and multiple dissipative soliton in an erbium-doped fiber laser
Li-Na Duan(段利娜), Jin Wen(文进), Wei Fan(樊伟), Wei Wang(王炜). Chin. Phys. B, 2017, 26(10): 104205.
No Suggested Reading articles found!