|
|
Solitons in nonlinear systems and eigen-states in quantum wells |
Li-Chen Zhao(赵立臣)1,2, Zhan-Ying Yang(杨战营)1,2, Wen-Li Yang(杨文力)1,2,3 |
1 School of Physics, Northwest University, Xi'an 710069, China;
2 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Xi'an 710069, China;
3 Institute of Modern Physics, Northwest University, Xi'an 710069, China |
|
|
Abstract We study the relations between solitons of nonlinear Schrödinger equation and eigen-states of linear Schrödinger equation with some quantum wells. Many different non-degenerated solitons are re-derived from the eigen-states in the quantum wells. We show that the vector solitons for the coupled system with attractive interactions correspond to the identical eigen-states with the ones of the coupled systems with repulsive interactions. Although their energy eigenvalues seem to be different, they can be reduced to identical ones in the same quantum wells. The non-degenerated solitons for multi-component systems can be used to construct much abundant degenerated solitons in more components coupled cases. Meanwhile, we demonstrate that soliton solutions in nonlinear systems can also be used to solve the eigen-problems of quantum wells. As an example, we present the eigenvalue and eigen-state in a complicated quantum well for which the Hamiltonian belongs to the non-Hermitian Hamiltonian having parity-time symmetry. We further present the ground state and the first exited state in an asymmetric quantum double-well from asymmetric solitons. Based on these results, we expect that many nonlinear physical systems can be used to observe the quantum states evolution of quantum wells, such as a water wave tank, nonlinear fiber, Bose-Einstein condensate, and even plasma, although some of them are classical physical systems. These relations provide another way to understand the stability of solitons in nonlinear Schrödinger equation described systems, in contrast to the balance between dispersion and nonlinearity.
|
Received: 09 October 2018
Revised: 24 October 2018
Accepted manuscript online:
|
PACS:
|
05.45.Yv
|
(Solitons)
|
|
02.30.Ik
|
(Integrable systems)
|
|
42.65.Tg
|
(Optical solitons; nonlinear guided waves)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11775176), the Basic Research Program of Natural Science of Shaanxi Province, China (Grant No. 2018KJXX-094), the Key Innovative Research Team of Quantum Many-Body Theory and Quantum Control in Shaanxi Province, China (Grant No. 2017KCT-12), and the Major Basic Research Program of Natural Science of Shaanxi Province, China (Grant No. 2017ZDJC-32). |
Corresponding Authors:
Li-Chen Zhao
E-mail: zhaolichen3@nwu.edu.cn
|
Cite this article:
Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营), Wen-Li Yang(杨文力) Solitons in nonlinear systems and eigen-states in quantum wells 2019 Chin. Phys. B 28 010501
|
[1] |
Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett. 15 240
|
[2] |
Kevrekidis P G and D J Frantzeskakis 2016 Rev. Phys. 1 140
|
[3] |
Agrawal G P 2007 Nonlinear Fiber Optics (4th Edn.)
|
[4] |
Osborne A R 2010 Nonlinear Ocean Waves and the Inverse Scattering Transform (New York: Elsevier)
|
[5] |
Kevrekidis P G, Frantzeskakis D J and Carretero-Gonzalez R 2008 Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment (Berlin Heidelberg: Springer)
|
[6] |
Chabchoub A, Hoffmann N, Onorato M and Akhmediev N 2012 Phys. Rev. X 2 011015
|
[7] |
Kibler B, Chabchoub A, Gelash A, Akhmediev N and Zakharov V E 2015 Phys. Rev. X 5 041026
|
[8] |
Becker C, Stellmer S, Panahi P S, Dorscher S, Baumert M, Eva-Maria Richter, Kronjager J, Bongs K and Sengstock K 2008 Nat. Phys. 4 496
|
[9] |
Kay I and Moses H E 1956 J. Appl. Phys. 27 1503
|
[10] |
Nogami Y and Warke C 1976 Phys. Lett. A 59 251
|
[11] |
Akhmediev N and Ankiewicz A 1999 Phys. Rev. Lett. 82 2661
|
[12] |
Zhao L C, Ling L, Yang Z Y and Yang W L 2017 Nonlinear Dyn. 88 2957
|
[13] |
Mateo A M and Brand J 2014 Phys. Rev. Lett. 113 255302
|
[14] |
Akhmediev N and Ankiewicz A 2000 Chaos 10 600
|
[15] |
Matveev V B and Salle M A 1991 Darboux Transformation and Solitons (Berlin: Springer-Verlag)
|
[16] |
Doktorov E V and Leble S B 2007 A Dressing Method in Mathematical Physics (Berlin: Springer-Verlag)
|
[17] |
Landau L D and Lifshitz E M 1989 Quantum Mechanics (Moscow: Nauka)
|
[18] |
Rosen N and Morse P M 1932 Phys. Rev. 42 210
|
[19] |
Kanna T and Lakshmanan M 2001 Phys. Rev. Lett. 86 5043
|
[20] |
Ling L, Zhao L C and Guo B 2015 Nonlinearity 28 3243
|
[21] |
Sheppard A P and Kivshar Y S 1997 Phys. Rev. E 55 4773
|
[22] |
Si L G, Yang W X, Lu X Y, Hao X and Yang X 2010 Phys. Rev. A 82 013836
|
[23] |
Feng B F 2014 J. Phys. A: Math. Theor. 47 355203
|
[24] |
Ohta Y, Wang D S and Yang J 2011 Studies Appl. Math. 127 345
|
[25] |
Zakharov V E and Shabat A B 1973 Sov. Phys. JETP 37 823
|
[26] |
Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett. 83 5198
|
[27] |
Weiner A M, Heritage J P, Hawkins R J, Thurston R N, Kirschner E M, Leaird D E and Tomlinson W J 1988 Phys. Rev. Lett. 61 2445
|
[28] |
Christodoulides D N, Coskun T H, Mitchell M, Chen Z and Segev M 1998 Phys. Rev. Lett. 80 5113
|
[29] |
Park Q H and Shin H J 2000 Phys. Rev. E 61 3093
|
[30] |
Yan D, Chang J J, Hamner C, Hoefer M, Kevrekidis P G, Engels P, Achilleos V, Frantzeskakis D J and Cuevas J 2012 J. Phys. B: At. Mol. Opt. Phys. 45 115301
|
[31] |
Zhao L C 2018 Phys. Rev. E 97 062201
|
[32] |
Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
|
[33] |
Nixon S, Ge L and Yang J 2012 Phys. Rev. A 85 023822
|
[34] |
Konotop V V, Yang J and Zezyulin D A 2016 Rev. Mod. Phys. 88 035002
|
[35] |
Kundu A 1984 J. Math. Phys. 25 3433
|
[36] |
Calogero F and Eckhaus W 1987 I. Inv. Prob. 3 229
|
[37] |
Geng X G and Tam H W 1999 J. Phys. Soc. Jpn. 68 1508
|
[38] |
Chen Y and Yan Z 2016 Sci. Rep. 6 23478
|
[39] |
Chen Y, Yan Z, Mihalache D and Malomed B A 2017 Sci. Rep. 7 1257
|
[40] |
Dai C Q, Wang Y Y, Fan Y and Yu D G 2018 Nonlinear Dyn. 92 1351
|
[41] |
Ankiewicz A, Krolikowski W and Akhmediev N 1999 Phys. Rev. E 59 6079
|
[42] |
Charalampidis E G, Wang W, Kevrekidis P G, Frantzeskakis D J and Cuevas-Maraver J 2016 Phys. Rev. A 93 063623
|
[43] |
Wang W and Kevrekidis P G 2017 Phys. Rev. E 95 032201
|
[44] |
Wang Y Y, Dai C Q, Xu Y Q, Zheng J and Fan Y 2018 Nonlinear Dyn. 92 1261
|
[45] |
Yan D, Chang J J, Hamner C, Kevrekidis P G, Engels P, Achilleos V, Frantzeskakis D J, Carretero-Gonzalez R and Schmelcher P 2011 Phys. Rev. A 84 053630
|
[46] |
Zhao L C, Ling L, Yang Z Y and Liu J 2016 Nonlinear Dyn. 83 659
|
[47] |
Kutuzov V, Petnikova V M, Shuvalov V V and Vysloukh V A 1998 Phys. Rev. E 57 6056
|
[48] |
Wen F, Yang Z Y, Liu C, Yang W L and Zhang Y Z 2014 Commun. Theor. Phys. 61 153
|
[49] |
Zhang Y Z 2012 J. Phys. A: Math. Theor. 45 065206
|
[50] |
Agboola D 2014 J. Math. Phys. 55 052102
|
[51] |
Bo X and Gong J 2010 Phys. Rev. A 81 033618
|
[52] |
Nguyen J H V, Dyke P, Luo D, Malomed B A and Hulet R G 2014 Nature Phys. 10 918
|
[53] |
Marchant A L, Billam T P, Wiles T P, Yu M M H, Gardiner S A and Cornish S L 2013 Nat. Commun. 4 1865
|
[54] |
Medley P, Minar M A, Cizek N C, Berryrieser D and Kasevich M A 2014 Phys. Rev. Lett. 112 060401
|
[55] |
Billam T P, Cornish S L and Gardiner S A 2011 Phys. Rev. A 83 041602
|
[56] |
Berano T M, Gokroo V, Khamehchi M A, Abroise J D, Frantzeskakis D J, Engles P and Kevrekidis P G 2018 Phys. Rev. Lett. 120 063202
|
[57] |
Coskun T H and Christodoulides D N 2000 Phys. Rev. Lett. 84 2374
|
[58] |
Onorato M, Residori S, Bortolozzo U, Montina A and Arecchi F T 2013 Phys. Rep. 528 47
|
[59] |
Doyon B, Yoshimura T and Caux Jean S 2018 Phys. Rev. Lett. 120 045301
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|