Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential
Dong-Mei Wang(王冬梅)1, Jian-Chong Xing(邢健崇)1, Rong Du(杜荣)1, Bo Xiong(熊波)2,†, and Tao Yang(杨涛)1,3,4,‡
1 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710127, China; 2 School of Science, Wuhan University of Technology, Wuhan 430070, China; 3 School of Physics, Northwest University, Xi'an 710127, China; 4 Peng Huanwu Center for Fundamental Theory, Xi'an 710127, China
Abstract We study dynamical behaviors of a Bose-Einstein condensate (BEC) containing a dark soliton reflected from potential wells and potential barriers, respectively. The orientation angle of the dark soliton and the width of the potential change play key roles on the reflection probability Rs. Variation of the reflection probability with respect to the orientation angle θ of the dark soliton can be well described by a cosine function Rs~cos[λ(θ-π/2)], where λ is a parameter determined by the width of the potential change. There are two characteristic lengths which determine the reflection properties. The dependence of the reflection probability on the width of the potential change shows distinct characters for potential wells and potential barriers. The length of the dark soliton determines the sensitive width of potential wells, whereas for potential barriers, the decay length of the matter wave in the region of the barrier qualifies the sensitive width of the barrier. The time evolution of the density profiles of the system during the reflection process is studied to disclose the different behaviors of matter waves in the region of the potential variation.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11775178, 12075175, 11934015, and 12047502), the Major Basic Research Program of Natural Science of Shaanxi Province, China (Grant Nos. 2017KCT-12 and 2017ZDJC-32), and the Open Research Fund of Shaanxi Key Laboratory for Theoretical Physics Frontiers (Grant No. SXKLTPF-K20190602).
Corresponding Authors:
Bo Xiong, Tao Yang
E-mail: boxiongpd@gmail.com;yangt@nwu.edu.cn
Cite this article:
Dong-Mei Wang(王冬梅), Jian-Chong Xing(邢健崇), Rong Du(杜荣), Bo Xiong(熊波), and Tao Yang(杨涛) Quantum reflection of a Bose-Einstein condensate with a dark soliton from a step potential 2021 Chin. Phys. B 30 120303
[1] Friedrich H and Trost J 2004 Phys. Rep.397 359 [2] Landau L D, Landau L D and Landau L D 1992 Lehrbuch der Theoretischen Physik I!I!I. Quantenmechanik (Europa Lehrmittel Verlag) [3] Landragin A, Courtois J Y, Labeyrie G, Vansteenkiste N, Westbrook C I and Aspect A 1996 Phys. Rev. Lett77 1464 [4] Segev B, Côté R and Raizen M G 1997 Phys. Rev. A56 R3350 [5] Côté R, Segev B and Raizen M G 1998 Phys. Rev. A58 3999 [6] Pasquini T A, Saba M, Jo G B, Shin Y, Ketterle W, Pritchard D E, Savas T A and Mulders N 2006 Phys. Rev. Lett97 093201 [7] Dufour G, Guérout R, Lambrecht A, Nesvizhevsky V V, Reynaud S and Voronin A Yu 2013 Phys. Rev. A87 022506 [8] Zhao B S, Schewe H C, Meijer G and Schöllkopf W 2010 Phys. Rev. A105 133203 [9] Shimizu F 2001 Phys. Rev. Lett.86 987 [10] Scott R G, Martin A M, Fromhold T M and Sheard F W 2005 Phys. Rev. Lett.95 073201 [11] Pasquini T A, Shin Y, Sanner C, Saba M, Schirotzek A, Pritchard D E and Ketterle W 2004 Phys. Rev. Lett.93 223201 [12] Silvestre M, Cysne Tarik P, Szilard D, Pinheiro F A and Farina C 2019 Phys. Rev. A100 033605 [13] Judd T E, Scott R G, Martin A M, Kaczmarek B and Fromhold T M 2011 New J. Phys.13 083020 [14] Cornish S L, Parker N G, Martin A M, Judd T E, Scott R G, Fromhold T M and Adams C S 2009 Physica D238 1299 [15] Dodd, Roger K, Eilbeck, Chris J, John D, Morris and Hedley C 1982 Solitons and Nonlinear Wave Equations (New York:Academic Press) [16] Hirota and Ryogo 1973 J. Math. Phys.14 810 [17] Kuznetsov E A, Rubenchik A M and Zakharov V E 1987 Physics Reports142 103 [18] Lonngren K E 2000 Plasma Phys.25 943 [19] Tang D Y, Zhang H, Zhao L M and Wu X 2008 Phys. Rev. Lett.101 153904 [20] Gibbon J D, Caudrey P J, Bullough R K and Eilbeck J C 1973 Lettere Al Nuovo Cimento8 775 [21] Zabusky N J 1968 Phys. Rev.168 124 [22] Newell A C 1980 The Inverse Scattering Transform (Berlin:Springer) [23] Proukakis N P, Parker N G, Frantzeskakis D J and Adams C S 2004 J. Opt. B6 S380 [24] Wu M Z, Kalinikos B A and Patton C E 2004 Phys. Rev. Lett.93 157207 [25] Sakaguchi H and Malomed B A 2016 New J. Phys.18 025020 [26] Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K, Sanpera A, Shlyapnikov G V and Lewenstein M 1999 Phys. Rev. Lett.83 5198 [27] Denschlag J, Simsarian J E, Feder D L, Clark Charles W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K and Reinhardt W P 2000 Science287 97 [28] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K and Reinhardt W P 1999 Generating Solitons by Phase Engineering of a Bose-Einstein Condensate (Laser Cooling:Bose-Einstein Condensation and Atom Laser-Proceedings of CCAST (World Laboratory Workshop) [29] Stellmer S, Becker C, Soltan-Panahi P, Richter E-M, Dörscher S, Baumert M, Kronjäger J, Bongs K and Sengstock K 2008 Phys. Rev. Lett.101 120406 [30] Anderson B P, Haljan P C, Regal C A, Feder D L, Collins L A, Clark C W, Cornell E A 2001 Phys. Rev. Lett.86 2926 [31] Engels P and Atherton C 2007 Phys. Rev. Lett.99 160405 [32] Chang J J, Engels P and Hoefer M A 2008 Phys. Rev. Lett.101 170404 [33] Jo G B, Choi J H, Christensen C A, Pasquini T A, Lee Y R, Ketterle W and Pritchard D E 2007 Phys. Rev. Lett.98 180401 [34] Weller A, Ronzheimer J P, Gross C, Esteve J, Oberthaler M K, Frantzeskakis D J, Theocharis G and Kevrekidis P G 2008 Phys. Rev. Lett.101 130401 [35] Jurisch A and Rost J M 2010 Phys. Rev. A81 043610 [36] Scott R G, Hutchinson D A W and Gardiner C W 2006 Phys. Rev. A74 053605 [37] Martin A D, Adams C S and Gardiner S A 2007 Phys. Rev. Lett.98 020402 [38] Martin A D, Adams C S and Gardiner S A 2008 Phys. Rev. A77 013620 [39] Lee C and Brand J 2005 Europhys. Lett.73 321 [40] Xu T F, Zhang Y F, Xu L C and Li Z D 2017 Chin. Phys. B26 100304 [41] Xu Y, Zhang Y and Wu B 2013 Phys. Rev. A87 013614 [42] M Liu, L She, H W Xiong and M S Zhan 2006 Phys. Rev. A74 043619 [43] Martin A M, Scott R G and Fromhold T M 2007 Phys. Rev. A75 065602 [44] Cheng Q L, Bai W K, Zhang Y Z, Xiong B and Yang T 2019 Laser Phys.29 015501 [45] Sciacca M, Barenghi C F and Parker N G 2017 Phys. Rev. A95 013628 [46] Gaunt A L, Schmidutz T F, Gotlibovych I, Smith R P and Hadzibabic Z 2013 Phys. Rev. Lett.110 200406 [47] Meyrath T P, Schreck F, Hanssen J L, Chuu C S and Raizen M G 2005 Phys. Rev. A71 041604(R) [48] Xiong B, Yang T and Benedict K A 2013 Phys. Rev. A88 043602 [49] Yang T, Xiong B and Benedict K A 2013 Phys. Rev. A87 023603 [50] Liu Z, Jia W G, Wang H Y, Wang Y, Neimule M K and Zhang J P 2020 Chin. Phys. B29 064212 [51] Xu T F, Li W L, Li Z D and Zhang C 2018 Chaos, Solitons & Fractals111 62
[1]
Superfluid to Mott-insulator transition in a one-dimensional optical lattice Wenliang Liu(刘文良), Ningxuan Zheng(郑宁宣), Jun Jian(蹇君), Li Tian(田丽), Jizhou Wu(武寄洲), Yuqing Li(李玉清), Yongming Fu(付永明), Peng Li(李鹏), Vladimir Sovkov, Jie Ma(马杰), Liantuan Xiao(肖连团), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(7): 073702.
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.