INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule |
Hui Li(李慧)1, Lina Ma(马丽娜)1, Hang Yin(尹航)1,2, Ying Shi(石英)1 |
1 Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China;
2 State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China |
|
|
Abstract Density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods are used to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited-state intramolecular proton transfer (ESIPT) for the 4-N,N'-(diethylamino)-2-hydroxybenzaldehyde (DEAHB). The structures of DEAHB and its hydrogen-bonded complex in the ground-state and the excited-state are optimized. In addition, the detailed descriptions of frontier molecular orbitals of the DEAHB monomer and DEAHB-DMSO complex are presented. Moreover, the transition density matrix is worked out to gain deeper insight into the orbitals change. It is hoped that the present work not only elaborates different influence mechanisms between intramolecular and intermolecular hydrogen bonding interactions on the ESIPT process for DEAHB, but also may be helpful to design and develop new materials and applications involved DEAHB systems in the future.
|
Received: 19 March 2018
Revised: 22 May 2018
Accepted manuscript online:
|
PACS:
|
82.39.Jn
|
(Charge (electron, proton) transfer in biological systems)
|
|
31.15.ee
|
(Time-dependent density functional theory)
|
|
87.15.ht
|
(Ultrafast dynamics; charge transfer)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB922204) and the National Natural Science Foundation of China (Grant Nos. 11574115 and 11704146). |
Corresponding Authors:
Hang Yin
E-mail: yinhang@jlu.edu.cn
|
Cite this article:
Hui Li(李慧), Lina Ma(马丽娜), Hang Yin(尹航), Ying Shi(石英) Effect of intramolecular and intermolecular hydrogen bonding on the ESIPT process in DEAHB molecule 2018 Chin. Phys. B 27 098201
|
[1] |
Yao H and Funada T 2014 Chem. Commun. 50 2748
|
[2] |
El Nahhas A, Pascher T, Leone L, Panzella L, Napolitano A and Sundstrom V 2014 J. Phys. Chem. Lett. 5 2094
|
[3] |
Tang K C, Chang M J, Lin T Y, Pan H A, Fang T C, Chen K Y, Hung W Y, Hsu Y H and Chou P T 2011 J. Am. Chem. Soc. 133 17738
|
[4] |
Tang K C, Chen C L, Chuang H H, Chen J L, Chen Y J, Lin Y C, Shen J Y, Hu W P and Chou P T 2011 J. Phys. Chem. Lett. 2 3063
|
[5] |
Barman S, Mukhopadhyay S K, Biswas S, Nandi S, Gangopadhyay M, Dey S, Anoop A and Singh N D P 2016 Angew. Chem. Int. Ed. 55 4194
|
[6] |
Weller A 1956 Ber. Bunsenges. Phys. Chem. 60 1144
|
[7] |
Zhao J Z, Ji S M, Chen Y H, Guo H M and Yang P 2012 Phys. Chem. Chem. Phys. 14 8803
|
[8] |
Shiraishi Y, Matsunaga Y, Hongpitakpong P and Hirai T 2013 Chem. Commun. 49 3434
|
[9] |
Liu B, Wang H, Wang T S, Bao Y Y, Du F F, Tian J, Li Q B A and Bai R K 2012 Chem. Commun. 48 2867
|
[10] |
Shynkar V V, Klymchenko A S, Kunzelmann C, Duportail G, Muller C D, Demchenko A P, Freyssinet J M and Mely Y 2007 J. Am. Chem. Soc. 129 2187
|
[11] |
Padalkar V S and Seki S 2016 Chem. Soc. Rev. 45 169
|
[12] |
Paterson M J, Robb M A, Blancafort L and DeBellis A D 2005 J. Phys. Chem. A 109 7527
|
[13] |
Demchenko A P, Tang K C and Chou P T 2013 Chem. Soc. Rev. 42 1379
|
[14] |
Klymchenko A S 2017 Acc. Chem. Res. 50 366
|
[15] |
Cheng X, Wang K, Huang S, Zhang H Y, Zhang H Y and Wang Y 2015 Angew. Chem. Int. Ed. 54 8369
|
[16] |
Yang D P, Yang G, Zhao J F, Zheng R and Wang Y S 2017 J. Cluster Sci. 28 2449
|
[17] |
Yang D P, Zheng R, Wang Y S and Lv J 2017 J. Cluster Sci. 28 937
|
[18] |
Zhang M X, Zhou Q, Zhang M R, Dai Y M, Song P and Jiang Y 2017 J. Cluster Sci. 28 1191
|
[19] |
Jia X L, Li C Z, Li D L and Liu Y F 2018 Spectrochim. Acta Part A 192 168
|
[20] |
Zhou P W, Hoffmann M R, Han K L and He G Z 2015 J. Phys. Chem. B 119 2125
|
[21] |
Han K L and Zhao G J 2011 Hydrogen Bonding Transfer in the Excited State (Wiley Online Library) p. 555
|
[22] |
Zheng J J, Zhang G L, Guo Y X, Li X P and Chen W J 2007 Chin. Phys. B 16 1047
|
[23] |
Wu F, Lin L, Li X P, Yu Y X, Zhang G L and Chen W J 2008 Chin. Phys. B 17 1461
|
[24] |
Sakai K i, Takahashi S, Kobayashi A, Akutagawa T, Nakamura T, Dosen M, Kato M and Nagashima U 2010 Dalton T. 39 1989
|
[25] |
Zhang X and Liu J Y 2016 Dyes Pigments 125 80
|
[26] |
Yin H, Shi Y and Wang Y 2014 Spectrochim. Acta Part A 129 280
|
[27] |
Yin H, Li H, Xia G M, Ruan C Y, Shi Y, Wang H M, Jin M X and Ding D J 2016 Sci. Rep. 6 19774
|
[28] |
Liang J, Tang B and Liu B 2015 Chem. Soc. Rev. 44 2798
|
[29] |
Jana S, Dalapati S and Guchhait N 2013 J. Phys. Chem. A 117 4367
|
[30] |
Yang D P, Yang Y G and Liu Y F 2014 Spectrochim. Acta Part A 117 379
|
[31] |
Song P, Li Y Z, Ma F C, Pullerits T and Sun M T 2013 J. Phys. Chem. C 117 15879
|
[32] |
Yang Y F, Zhao J F and Li Y Q 2016 Sci. Rep. 6 32152
|
[33] |
Zhao G J and Han K L 2007 J. Phys. Chem. A 111 2469
|
[34] |
Zhao G J and Han K L 2008 J. Comput. Chem. 29 2010
|
[35] |
Zhao G J and Han K L 2012 Acc. Chem. Res. 45 404
|
[36] |
Zhao X H and Chen M D 2011 Chem. Phys. Lett. 512 35
|
[37] |
Huang J D, Yu K, Ma H P, Chai S and Dong B 2017 Dyes Pigments 141 441
|
[38] |
Zhao J F, Liu X Y and Zheng Y J 2017 J. Phys. Chem. A 121 4002
|
[39] |
Chen J S, Zhou P W, Zhao L and Chu T S 2014 Rsc Adv. 4 254
|
[40] |
Zhang M Z, Ren B P, Wang Y and Zhao C X 2013 Spectrochim. Acta Part A 101 191
|
[41] |
Furche F and Ahlrichs R 2002 J. Chem. Phys. 117 7433
|
[42] |
Treutler O and Ahlrichs R 1995 J. Chem. Phys. 102 346
|
[43] |
Feller D 1996 J. Comput. Chem. 17 1571
|
[44] |
Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision B. 01 (Gaussian, Inc., Wallingford, 2009)
|
[45] |
Lukeš V, Aquino A and Lischka H 2005 J. Phys. Chem. A 109 10232
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|