Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 097201    DOI: 10.1088/1674-1056/27/9/097201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Temperature dependence on the electrical and physical performance of InAs/AlSb heterojunction and high electron mobility transistors

Jing Zhang(张静)1,2, Hongliang Lv(吕红亮)1, Haiqiao Ni(倪海桥)2, Zhichuan Niu(牛智川)2, Yuming Zhang(张玉明)1
1 School of Microelectronics, Xidian University and Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi'an 710071, China;
2 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

In this report, the effect of temperature on the InAs/AlSb heterojunction and high-electron-mobility transistors (HEMTs) with a gate length of 2 μ are discussed comprehensively. The results indicate that device performance is greatly improved at cryogenic temperatures. It is also observed that the device performance at 90 K is significantly improved with 27% lower gate leakage current, 12% higher maximum drain current, and 22.5% higher peak transconductance compared to 300 K. The temperature dependence of mobility and the two-dimensional electron gas concentration in the InAs/AlSb heterojunction for the temperature range 90 K-300 K is also investigated. The electron mobility at 90 K (42560 cm2/V·s) is 2.5 times higher than its value at 300 K (16911 cm2/V·s) because of the weaker lattice vibration and the impurity ionization at cryogenic temperatures, which corresponds to a reduced scattering rate and higher mobility. We also noted that the two-dimensional electron gas concentration decreases slightly from 1.99×1012 cm-2 at 300 K to 1.7×1012 cm-2 at 90 K with a decrease in temperature due to the lower ionization at cryogenic temperature and the nearly constant ΔEc.

Keywords:  temperature      mobility      two-dimensional electron gas      InAs/AlSb HEMT  
Received:  05 March 2018      Revised:  12 June 2018      Accepted manuscript online: 
PACS:  72.10.-d (Theory of electronic transport; scattering mechanisms)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  81.05.Ea (III-V semiconductors)  
Fund: 

Project supported by the Advanced Research Foundation of China (Grant No. 914xxx803-051xxx111), the National Defense Advanced Research Project of China (Grant No. 315xxxxx301), and the National Defense Innovation Program of China (Grant No. 48xx4).

Corresponding Authors:  Hongliang Lv     E-mail:  hllv@mail.xidian.edu.cn

Cite this article: 

Jing Zhang(张静), Hongliang Lv(吕红亮), Haiqiao Ni(倪海桥), Zhichuan Niu(牛智川), Yuming Zhang(张玉明) Temperature dependence on the electrical and physical performance of InAs/AlSb heterojunction and high electron mobility transistors 2018 Chin. Phys. B 27 097201

[1] Guan H and Guo H 2017 Chin. Phys. B 26 5 058501
[2] Chiu H C, Lin W Y, Chou C Y, Yang S H, Mai K D, Chiu P C, Hsuehb W J and Chyi J I 2015 Microelectron. Eng. 183 20 17
[3] Liu L, Alt A R, Benedickter H and Bolognesi C R 2012 IEEE Electron Dev. Lett. 33
[4] Sun S X, Wei Z C, Xia P H, Wang W B, Duan Z Y, Li Y X, Zhong Y H, Ding P and Jin Z 2018 Chin. Phys. B 27 028502
[5] Moschetti G, Wadefalk N, Nilsson P Å, Abbasi M, Desplanque L, Wallart X and Grahn J 2012 IEEE Microw. Wirel. Compon. Lett. 22
[6] Shojaei B, McFadden A, Shabani J, Schultz B D and Palmstr?m C J 2015 Appl. Phys. Lett. 106 222101
[7] Tschirky T, Mueller S, Lehner Ch A, Falt S, Ihn T, Ensslin K and Wegscheider W 2017 Phys. Rev. B 95 115304
[8] Wang J, Xing J L, Xiang W, Wang G W, Xu Y Q, Ren Z W and Niu Z C 2014 Appl. Phys. Lett. 104 052111
[9] Atsushi N, Herbert K and John H 1989 Appl. Phys. Lett. 54 19
[10] Lin H K, Fan D W, Li Y C, Chiu P C, Chien C Y, Li P W, Chyi J I, Ko C H, Kuan T M, Hsieh M K, Lee W C and Wann C H 2010 Solid-State Electron. 54 505
[11] Lai P H, Fu S I, Hung C W, Tsai Y Y, Chen T P, Chen C W and Liu W C 2006 Appl. Phys. Lett. 89 263503
[1] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Current bifurcation, reversals and multiple mobility transitions of dipole in alternating electric fields
Wei Du(杜威), Kao Jia(贾考), Zhi-Long Shi(施志龙), and Lin-Ru Nie(聂林如). Chin. Phys. B, 2023, 32(2): 020505.
[4] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[5] Mobility edges generated by the non-Hermitian flatband lattice
Tong Liu(刘通) and Shujie Cheng(成书杰). Chin. Phys. B, 2023, 32(2): 027102.
[6] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[7] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[8] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[9] Temperature characterizations of silica asymmetric Mach-Zehnder interferometer chip for quantum key distribution
Dan Wu(吴丹), Xiao Li(李骁), Liang-Liang Wang(王亮亮), Jia-Shun Zhang(张家顺), Wei Chen(陈巍), Yue Wang(王玥), Hong-Jie Wang(王红杰), Jian-Guang Li(李建光), Xiao-Jie Yin(尹小杰), Yuan-Da Wu(吴远大), Jun-Ming An(安俊明), and Ze-Guo Song(宋泽国). Chin. Phys. B, 2023, 32(1): 010305.
[10] Numerical simulation of the thermal non-equilibrium flow-field characteristics of a hypersonic Apollo-like vehicle
Minghao Yu(喻明浩), Zeyang Qiu(邱泽洋), Bo Lv(吕博), and Zhe Wang(王哲). Chin. Phys. B, 2022, 31(9): 094702.
[11] Finite superconducting square wire-network based on two-dimensional crystalline Mo2C
Zhen Liu(刘震), Zi-Xuan Yang(杨子萱), Chuan Xu(徐川), Jia-Ji Zhao(赵嘉佶), Lu-Junyu Wang(王陆君瑜), Yun-Qi Fu(富云齐), Xue-Lei Liang(梁学磊), Hui-Ming Cheng(成会明), Wen-Cai Ren(任文才), Xiao-Song Wu(吴孝松), and Ning Kang(康宁). Chin. Phys. B, 2022, 31(9): 097404.
[12] Synthesis of hexagonal boron nitride films by dual temperature zone low-pressure chemical vapor deposition
Zhi-Fu Zhu(朱志甫), Shao-Tang Wang(王少堂), Ji-Jun Zou(邹继军), He Huang(黄河), Zhi-Jia Sun(孙志嘉), Qing-Lei Xiu(修青磊), Zhong-Ming Zhang(张忠铭), Xiu-Ping Yue(岳秀萍), Yang Zhang(张洋), Jin-Hui Qu(瞿金辉), and Yong Gan(甘勇). Chin. Phys. B, 2022, 31(8): 086103.
[13] Core structure and Peierls stress of the 90° dislocation and the 60° dislocation in aluminum investigated by the fully discrete Peierls model
Hao Xiang(向浩), Rui Wang(王锐), Feng-Lin Deng(邓凤麟), and Shao-Feng Wang(王少峰). Chin. Phys. B, 2022, 31(8): 086104.
[14] Magnetic properties of a mixed spin-3/2 and spin-2 Ising octahedral chain
Xiao-Chen Na(那小晨), Nan Si(司楠), Feng-Ge Zhang(张凤阁), and Wei Jiang(姜伟). Chin. Phys. B, 2022, 31(8): 087502.
[15] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
No Suggested Reading articles found!