Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(9): 094220    DOI: 10.1088/1674-1056/27/9/094220
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Anti-detection technology of cat eye target based on decentered field lens

Da-Lin Song(宋大林)1,2, Jun Chang(常军)1, Yi-Fei Zhao(赵一菲)2, Ze-Xia Zhang(张泽霞)1
1 School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China;
2 The First Research Institute of the Ministry of Public Security, Beijing 100048, China
Abstract  

Optoelectronic imaging equipment is easy to expose to active laser detection devices because of “cat eye” effect. In this paper, we propose a new structure of optical system to reduce the retroreflector effect of a cat eye target. Decentered field lens structure is adopted in the design without sacrificing imaging quality and clear aperture. An imaging system with ±30° field of view is taken for example. The detailed design and simulation results are presented. The results indicate that this kind of optical system can reduce the retroreflection signal substantially and maintain acceptable imaging performance.

Keywords:  geometric optical design      cat eye effect reduction      decentered field lens  
Received:  25 February 2018      Revised:  23 May 2018      Accepted manuscript online: 
PACS:  42.15.Eq (Optical system design)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 61471039).

Corresponding Authors:  Jun Chang     E-mail:  optics_chang@126.com

Cite this article: 

Da-Lin Song(宋大林), Jun Chang(常军), Yi-Fei Zhao(赵一菲), Ze-Xia Zhang(张泽霞) Anti-detection technology of cat eye target based on decentered field lens 2018 Chin. Phys. B 27 094220

[1] Lecocq C, Ladobordowsky O and Meyzonnette J L 2003 Proc. SPIE 5086 280
[2] Mieremet A L and Schleijpen R M A 2008 Proc. SPIE 2008 6950
[3] Gong M, He S, Guo R and Wang W 2016 Appl. Opt. 55 4461
[4] Rabinovich W S, Goetz P G, Mahon R, Waluschka E and Gilbreath G C 2003 Proc. SPIE 4975 12
[5] Rabinovich W S, Goetz P G, Mahon R, Swingen L, Murphy J, Gilbreath G C and Binari S 2004 Proc. SPIE 5550 12
[6] Sun H, Xiong F and Gu S 2006 Proc. SPIE 6344 63442
[7] Sun H, Gu S and Ni G 2006 Proc. SPIE 6029 334
[8] Wang Y, Zhang X, Wang L J and Wang C 2014 Chin. Phys. B 23 014202
[9] Zhang C M, Ren W Y and Mu T K 2010 Chin. Phys. B 19 024202
[10] Li C Y, Lu W G and Qiao L 2018 Acta Phys. Sin. 67 030703 (in Chinese)
[11] Lu J N, Yu J and Tong Y Z 2012 Chin. Phys. B 21 127105
[12] Wang D G, Deng Y Y, Zhang Z Y and Sun Y Z 2015 Acta Phys. Sin. 64 060701 (in Chinese)
[13] Zhang X H, Zhang S and Sun C S 2016 Acta Phys. Sin. 65 144204 (in Chinese)
[14] Zhang Y, Sun X, Lei P and Yu D 2015 Infrared Laser Eng. 44 2268 (in Chinese)
[15] Liu B, Zhou B and Zhang Y 2012 Semicond. Optoelectronics 33 121
[16] Arjan L M, Ric H M A S, Franc J M V P and Henny V 2010 Opt. Eng. 49 1794
[17] Lei P, Xing H, Xue T and Lv H P 2009 Infrared Laser Eng. 45 1084 (in Chinese)
[18] Sun H, Gu S and Ni G 2006 Proc. SPIE 6029 334
[19] Smith W J 2000 Modern Optical Engineering, 3rd Edn. (New York:McGraw-Hill) pp. 54-55
[1] Research on the model of high robustness computational optical imaging system
Yun Su(苏云), Teli Xi(席特立), and Xiaopeng Shao(邵晓鹏). Chin. Phys. B, 2023, 32(2): 024202.
[2] Enhanced single photon emission in silicon carbide with Bull's eye cavities
Xing-Hua Liu(刘兴华), Fang-Fang Ren(任芳芳), Jiandong Ye(叶建东), Shuxiao Wang(王书晓), Wei-Zong Xu(徐尉宗), Dong Zhou(周东), Mingbin Yu(余明斌), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2022, 31(10): 104206.
[3] Bandwidth expansion and pulse shape optimized for 10 PW laser design via spectral shaping
Da-Wei Li(李大为), Tao Wang(王韬), Xiao-Lei Yin(尹晓蕾), Li Wang(王利), Jia-Mei Li(李佳美),Hui Yu(余惠), Yong Cui(崔勇), Tian-Xiong Zhang(张天雄), Xing-Qiang Lu(卢兴强), and Guang Xu(徐光). Chin. Phys. B, 2022, 31(9): 094210.
[4] Design of three-dimensional imaging lidar optical system for large field of view scanning
Qing-Yan Li(李青岩), Yu Zhang(张雨), Shi-Yu Yan(闫诗雨),Bin Zhang(张斌), and Chun-Hui Wang(王春晖). Chin. Phys. B, 2022, 31(7): 074201.
[5] New multiplexed system for synchronous measurement of out-of-plane deformation and two orthogonal slopes
Yonghong Wang(王永红), Xiao Zhang(张肖), Qihan Zhao(赵琪涵), Yanfeng Yao(姚彦峰), Peizheng Yan(闫佩正), and Biao Wang(王标). Chin. Phys. B, 2022, 31(3): 034202.
[6] Digital synthesis of programmable photonic integrated circuits
Juan Zhang(张娟), Zhengyong Ji(计正勇), Yipeng Ding(丁一鹏), and Yang Wang(王阳). Chin. Phys. B, 2022, 31(2): 024208.
[7] Tunable terahertz transmission behaviors and coupling mechanism in hybrid MoS2 metamaterials
Yuwang Deng(邓雨旺), Qingli Zhou(周庆莉), Wanlin Liang(梁菀琳), Pujing Zhang(张朴婧), and Cunlin Zhang(张存林). Chin. Phys. B, 2022, 31(1): 014101.
[8] Analysis of natural frequency for imaging interface in liquid lens
Na Xie(谢娜). Chin. Phys. B, 2021, 30(10): 104702.
[9] Multiple induced transparency in a hybrid driven cavity optomechanical device with a two-level system
Wei Zhang(张伟), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), and Zhong-Yang Wang(王中阳). Chin. Phys. B, 2021, 30(9): 094203.
[10] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[11] Narrow-band high-transmittance birefringent filter and its application in wide color gamut display
Chi Zhang(张弛), Rui Niu(牛瑞), Wenjuan Li(李文娟), Xiaoshuai Li(李小帅), Hongmei Ma(马红梅), and Yubao Sun(孙玉宝). Chin. Phys. B, 2021, 30(5): 054207.
[12] Controlling multiple optomechanically induced transparency in the distant cavity-optomechanical system
Rui-Jie Xiao(肖瑞杰), Gui-Xia Pan(潘桂侠), and Xiao-Ming Xiu(修晓明). Chin. Phys. B, 2021, 30(3): 034209.
[13] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[14] Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network
Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿). Chin. Phys. B, 2020, 29(6): 064201.
[15] Wide color gamut switchable autostereoscopic 3D display based on directional quantum-dot backlight
Bin Xu(徐斌), Xue-Ling Li(李雪玲), Yuan-Qing Wang(王元庆). Chin. Phys. B, 2019, 28(12): 124208.
No Suggested Reading articles found!