Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(8): 086302    DOI: 10.1088/1674-1056/27/8/086302
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles study of the (CuxNi1-x)3Sn precipitations with different structures in Cu-Ni-Sn alloys

Guang-Wei Peng(彭广威)1,2, Xue-Ping Gan(甘雪萍)1, Zhou Li(李周)3, Ke-Chao Zhou(周科朝)1
1 State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China;
2 Hunan Automotive Engineering Vocational College, Zhuzhou 412001, China;
3 School of Materials Science and Engineering, Central South University, Changsha 410083, China
Abstract  The structural parameters, the formation energies, and the elastic and thermodynamic properties of the (CuxNi1-x)3Sn phase with different structures are studied by the virtual crystal approximation (VCA) and super-cell (SC) methods. The lattice constants, formation energies, and elastic constants obtained by SC and VCA are generally consistent with each other. It can be inferred that the VCA method is suitable for (CuxNi1-x)3Sn ordered phase calculation. The calculated results show that the equilibrium structures of Cu3Sn and Ni3Sn are D0a and D019 respectively. (CuxNi1-x)3Sn-D03 with various components are the metastable phase at temperature of 0 K, just as D022 and L12. With the temperature increase, the free energy of the D03 is lower than those of D022 and L12, and D022 and L12 eventually turn into D03 in the aging process. The (CuxNi1-x)3Sn-D022 is first precipitated in a solid solution because its structure and cell volume are most similar to those of a solid solution matrix. The L12 and the D022 possess better mechanical stability than the D03. Also, they may play a more important role in the strengthening of Cu-Ni-Sn alloys. This study is valuable for further research on Cu-Ni-Sn alloys.
Keywords:  (CuxNi1-x)3Sn      first-principle      virtual crystal approximation      super-cell  
Received:  13 March 2018      Revised:  28 April 2018      Accepted manuscript online: 
PACS:  63.20.dk (First-principles theory)  
  71.20.Lp (Intermetallic compounds)  
  71.15.Nc (Total energy and cohesive energy calculations)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2016YFB0301402), the Project of Innovation-Driven Plan in Central South University, and the State Key Laboratory of Powder Metallurgy, Central South University, Changsha, China.
Corresponding Authors:  Xue-Ping Gan     E-mail:  ganxueping@csu.edu.cn

Cite this article: 

Guang-Wei Peng(彭广威), Xue-Ping Gan(甘雪萍), Zhou Li(李周), Ke-Chao Zhou(周科朝) First-principles study of the (CuxNi1-x)3Sn precipitations with different structures in Cu-Ni-Sn alloys 2018 Chin. Phys. B 27 086302

[1] Sadykov F A, Barykin N P and Aslanyan I R 1999 Wear 225 649
[2] Ma X C, He G Q, He D H, Chen C S and Hu Z F 2008 Wear 265 1087
[3] Gu D D, Shen Y F and Lu Z J 2009 Materials Des. 30 2099
[4] He D H and Manory R 2001 Wear 249 626
[5] Masamichi Miki and Yoshikiyo Ogino 1961 J. Jpn. Inst. Met. 25 593
[6] Kratochvil P, Mencl J, Pesicka J, et al. 1984 Acta Metall. 32 1493
[7] Gupta K P 2000 J. Phase Equilibria 21 479
[8] Shin-ichiro K D, Akinori M and Kento O 2015 Jpn. Inst. Met. Mater. 79 664 (in Japanese)
[9] Wang Y H, Wang M P and Hong B 2004 Transactions of Materials and Treatment Proceeding of the 14$th Ifhtse Congress 25 97
[10] Plewes J T 1975 Metall. Trans. 6A 537
[11] Zhao J C and Notis M R 1998 Acta Mater. 46 4203
[12] Ahn S and Tsakalakos T 1983 MRS Proc. 21 539
[13] Yu C, Liu J Y, Lu H, Li P L and Chen J M 2007 Intermetallics 15 1471
[14] Perdew, J P, Chevary, J A, Vosko, S H, Jackson, K A Pederson M R, Singh, D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[15] Boulechfar R, Meradji H, Ghemid S, Drabia S and Bouhafs B 2013 Solid State Sci. 16 1
[16] Sadi F and Servant C 2007 Journal of Thermal Analysis and Calorimetry 90 319
[17] Pang X Y, Wang S Q, Zhang L, Liu Z Q and Shang J K 2008 J. Alloys Compd. 466 517
[18] Schreiner W H, Pureur P, Grandi T A, Kunzler J V, BrandÃO D E 1979 Journal of Thermal Analysis 17 489
[19] Sobczak R 1981 Journal of Magnetism and Magnetic Materials 24 325
[20] Schreiner W H , Pureur P, Grandi T A, Kunzler J V and Brandas D E 1979 J. Therm. Anal. 17 489
[21] Lee J S Pak, Mukherjee K, Inal O T and Pak H R 1989 Mater. Sci. Eng. A 117 167
[22] Leepak J C and Inal K 2008 Choice Reviews Online 45 45
[23] Wang T F, Chen P, Deng Y H and Tang B Y 2011 Transactions of Nonferrous Metals Cociety Society of China 21 388
[24] Boulechfar R, Meradji H, Ghemid S, Drablia S and Bouhafs B 2013 Solid State Sci. 16 1
[25] Zhang C S, Yan M F, You Y, Chne H T, Zhang F Y, Bai B, Chen L, Long Z and Li R W 2014 J. Alloys Compd. 615 854
[26] Divis M 1992 Phys. Stat. Sol. (b) 173 13
[27] Yuichiro Murakami and Sukeji Kachi 1983 Transactions of the Japan Institute of Metals 24 9
[28] Hu H, Wu X Z, Wang R, Jia Z H, Li W G and Liu Q 2016 J. Alloys Compd. 666 185
[29] Liu Y Z, Jiang Y H and Zhou R 2014 Rare Met. Mater. Eng. 43 2903
[30] Zhang C L 2001 Taiyuan University Technology 2011 (in Chinese)
[31] Nong Z S and Zhu J C 2012 Physica B 407 3555
[32] Pettifor D G 1992 Mater. Sci. Technol. 8 345
[33] Pugh S F 1954 Philos. Mag. 45 823
[34] Li L H, Wang W L and Wei B 2015 Comput. Mater. Sci. 99 274
[1] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[4] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[5] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[6] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[9] First-principles study on β-GeS monolayer as high performance electrode material for alkali metal ion batteries
Meiqian Wan(万美茜), Zhongyong Zhang(张忠勇), Shangquan Zhao(赵尚泉), and Naigen Zhou(周耐根). Chin. Phys. B, 2022, 31(9): 096301.
[10] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[11] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[14] Alloying and magnetic disordering effects on phase stability of Co2 YGa (Y=Cr, V, and Ni) alloys: A first-principles study
Chun-Mei Li(李春梅), Shun-Jie Yang(杨顺杰), and Jin-Ping Zhou(周金萍). Chin. Phys. B, 2022, 31(5): 056105.
[15] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
No Suggested Reading articles found!