ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
A method for generating double-ring-shaped vector beams |
Huan Chen(陈欢)1, Xiao-Hui Ling(凌晓辉)2, Zhi-Hong Chen(陈知红)1, Qian-Guang Li(李钱光)1, Hao Lv(吕昊)1, Hua-Qing Yu(余华清)1, Xu-Nong Yi(易煦农)1 |
1 College of Physics and Electronic Information Engineering, Hubei Engineering University, Xiaogan 432000, China;
2 Department of Physics and Electronic Information Science, Hengyang Normal University, Hengyang 421002, China |
|
|
Abstract We propose a method for generating double-ring-shaped vector beams. A step phase introduced by a spatial light modulator (SLM) first makes the incident laser beam have a nodal cycle. This phase is dynamic in nature because it depends on the optical length. Then a Pancharatnam-Berry phase (PBP) optical element is used to manipulate the local polarization of the optical field by modulating the geometric phase. The experimental results show that this scheme can effectively create double-ring-shaped vector beams. It provides much greater flexibility to manipulate the phase and polarization by simultaneously modulating the dynamic and the geometric phases.
|
Received: 30 November 2015
Revised: 01 February 2016
Accepted manuscript online:
|
PACS:
|
42.25.-p
|
(Wave optics)
|
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
42.79.-e
|
(Optical elements, devices, and systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11547017), the Hubei Engineering University Research Foundation, China (Grant No. z2014001), and the Natural Science Foundation of Hubei Province, China (Grant No. 2014CFB578). |
Corresponding Authors:
Xu-Nong Yi
E-mail: xnyi@szu.edu.cn
|
Cite this article:
Huan Chen(陈欢), Xiao-Hui Ling(凌晓辉), Zhi-Hong Chen(陈知红), Qian-Guang Li(李钱光), Hao Lv(吕昊), Hua-Qing Yu(余华清), Xu-Nong Yi(易煦农) A method for generating double-ring-shaped vector beams 2016 Chin. Phys. B 25 074201
|
[1] |
Zhan Q 2009 Adv. Opt. Photon. 1 1
|
[2] |
Beckley A M, Brown T G and Alonso M A 2010 Opt. Express 18 10777
|
[3] |
Galvez E J, Khadka S, Schubert W H and Nomoto S 2012 Appl. Opt. 51 2925
|
[4] |
Wang X, Ding J, Ni W, Guo C and Wang H 2007 Opt. Lett. 32 3549
|
[5] |
Chen H, Hao J, Zhang B, Xu J, Ding J and Wang H 2011 Opt. Lett. 36 3179
|
[6] |
Dorn R, Quabis S and Leuchs G 2003 Phys. Rev. Lett. 91 233901
|
[7] |
Deng D and Guo Q 2007 Opt. Lett. 32 2711
|
[8] |
Hao X, Kuang C, Wang T and Liu X 2010 Opt. Lett. 35 3928
|
[9] |
Du F, Zhou Z, Tan Q, Yang C, Zhang X and Zhu L 2013 Chin. Phys. B 22 064202
|
[10] |
Chen G, Song F and Wang H 2013 Opt. Lett. 38 3937
|
[11] |
Zhang W, Liu S, Li P, Jiao X and Zhao J 2013 Opt. Express 21 974
|
[12] |
Qin F, Huang K, Wu J, Jiao J, Luo X, Qiu C and Hong M 2015 Sci. Rep. 5 09977
|
[13] |
Cheng Z, Zhou Y, Xia M, Li W, Yang K and Zhou Y 2015 Chin. Phys. Lett. 73 77
|
[14] |
Lerman G M, Stern L and Levy U 2010 Opt. Express 18 27650
|
[15] |
Beckley A M, Brown T G and Alonso M A 2012 Opt. Express 20 9357
|
[16] |
Pohl D 1972 Appl. Phys. Lett. 20 266
|
[17] |
Bomzon Z, Kleiner V and Hasman E 2001 Opt. Lett. 26 1424
|
[18] |
Kang M, Chen J, Wang X and Wang H 2012 J. Opt. Soc. Am. B 29 572
|
[19] |
Yang Y, Dong Y, Zhao C and Cai Y 2013 Opt. Lett. 38 5418
|
[20] |
Man Z, Min C, Zhang Y, Shen Z and Yuan X 2013 Laser Phys. 23 105001
|
[21] |
Zhou J, Liu Y, Ke Y, Luo H and Wen S 2015 Opt. Lett. 40 3193
|
[22] |
He Y, Liu Z, Liu Y, Zhou J, Ke Y, Luo H and Wen S 2015 Opt. Lett. 40 5506
|
[23] |
Viswanathan N K and Inavalli V V G K 2009 Opt. Lett. 34 1189
|
[24] |
Niziev V G, Chang R S and Nesterov A V 2006 Appl. Opt. 45 8393
|
[25] |
Chen S, Zhou X, Liu Y, Ling X, Luo H and Wen S 2014 Opt. Lett. 39 5274
|
[26] |
Kozawa Y and Sato S 2006 Opt. Lett. 31 820
|
[27] |
Zhang Y, Ding B and Suyama T 2010 Phys. Rev. A 81 023831
|
[28] |
Tian B and Pu J 2011 Opt. Lett. 36 2014
|
[29] |
Nie Z, Li Z, Shi G, Zhang X, Wang Y and Song Y 2014 Opt. Lasers Eng. 59 93
|
[30] |
Tidwell S C, Kim G H and Kimura W D 1993 Appl. Opt. 32 5222
|
[31] |
Maurer C, Jesacher A, Fürhapter S, Bernet S and Ritsch-Marte M 2007 New J. Phys. 9 78
|
[32] |
Bomzon Z, Biener G, Kleiner V and Hasman E 2002 Opt. Lett. 27 1141
|
[33] |
Hasman E, Kleiner V, Biener G and Niv A 2003 Appl. Phys. Lett. 82 328
|
[34] |
Marrucci L 2008 Mol. Cryst. Liq. Cryst. 488 148
|
[35] |
Yi X, Ling X, Zhang Z, Li Y, Zhou X, Liu Y, Chen S, Luo H and Wen S 2014 Opt. Express 22 17207
|
[36] |
Liu Y, Ling X, Yi X, Zhou X, Chen S, Ke Y, Luo H and Wen S 2015 Opt. Lett. 40 756
|
[37] |
Beresna M, Gecevičius M, Kazansky P G and Gertus T 2011 Appl. Phys. Lett. 98 201101
|
[38] |
Beresna M, Gecevičius M and Kazansky P G 2011 Opt. Mater. Express 1 783
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|