|
|
Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit |
Kunzhe Dai(戴坤哲)1, Peng Zhao(赵鹏)1, Mengmeng Li(李蒙蒙)1, Xinsheng Tan(谭新生)1, Haifeng Yu(于海峰)1,2, Yang Yu(于扬)1,2 |
1 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China;
2 Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract A quantum algorithm provides a new way in solving certain computing problems and usually faster than classical algorithms. Here we report an implementation of a quantum algorithm to determine the parity of permutation in a single three-dimensional (3D) superconducting transmon qutrit system. The experiment shows the capacity to speed up in a qutrit, which can also be extended to a multi-level system for solving high-dimensional permutation parity determination problem.
|
Received: 12 February 2018
Revised: 22 March 2018
Accepted manuscript online:
|
PACS:
|
03.67.Ac
|
(Quantum algorithms, protocols, and simulations)
|
|
03.67.Lx
|
(Quantum computation architectures and implementations)
|
|
85.25.-j
|
(Superconducting devices)
|
|
Fund: Project supported by the National Key Basic Research and Development Program of China (Grant No.2016YFA0301802) and the National Natural Science Foundation of China (Grant Nos.11504165,11474152,and 61521001). |
Corresponding Authors:
Xinsheng Tan, Haifeng Yu
E-mail: txs.nju@gmail.com;hfyu@nju.edu.cn
|
Cite this article:
Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬) Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit 2018 Chin. Phys. B 27 060305
|
[1] |
Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
|
[2] |
Montanaro A 2016 npj Quantum Information 2 15023
|
[3] |
Cleve R, Ekert A, Macchiavello C and Mosca M 1998 Proc. R. Soc. Lond. A 454 339
|
[4] |
Deutsch D and Jozsa R 1992 Proc. R. Soc. Lond. A 439 553
|
[5] |
Shor P W 1997 SIAM J. Comput. 26 1484
|
[6] |
Grover L K 1997 Phys. Rev. Lett. 79 325
|
[7] |
Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472
|
[8] |
Han K H, Kim J H 2000 Proceedings of the Congress on Evolutionary Computation, July, 2000, pp. 1354-1360
|
[9] |
Kassal I, Jordan S P, Love P, Mohseni M and Aspuruguzik A 2008 Proc. Natl. Acad. Sci. USA 105 18681
|
[10] |
Ambainis A 2007 SIAM J. Comput. 37 210
|
[11] |
Howard M J, Wallman J J, Veitch V and Emerson J 2014 Nature 510 351
|
[12] |
Zhang X, Um M, Zhang J H,An S M, Wang Y, Deng D L, Shen C, Duan L M and Kim K 2013 Phys. Rev. Lett. 110 070401
|
[13] |
Den N and Maarten V Phys. Rev. Lett. 2013 110 060504
|
[14] |
Dogra S, Arvind and Dorai K 2014 Phys. Lett. A 378 3452
|
[15] |
Gedik Z, Silva I A,Cakmak B, Karpat G, Vidoto E L G, Soarespinto D O, Deazevedo E R and Fanchini F F 2015 Sci. Rep. 5 14671
|
[16] |
Wang F R, Wang Y L, Liu R F, Chen D X, Zhang P, Gao H and Li F L 2015 Sci. Rep. 5 10995
|
[17] |
Zhan X, Li J, Qin H, Bian Z H and Xue P 2015 Opt. Express 23 18422
|
[18] |
Kochen S and Specker E P 1967 J. Math. Mech. 17 59
|
[19] |
Tan X S, Zhao Y X, Liu Q, Xue G M, Yu H F, Wang Z D and Yu Y 2017 npj Quantum Materials 2 s41535
|
[20] |
Houck A, Türeci H E and Koch J 2012 Nat. Phys. 8 292
|
[21] |
Kiktenko E O, Fedorov A K, Manko O V and Manko V I 2015 Phys. Rev. A 91 042312
|
[22] |
Kiktenko E O, Fedorov A K, Strakhov A A and Manko V I 2015 Phys. Lett. A 379 1409
|
[23] |
Lanyon B P, Barbieri M, Almeida M P, Jennewein T, Ralph T C, Resch K J, Pryde G J, Obrien J L, Gilchrist A and White A 2009 Nat. Phys. 5 134
|
[24] |
Muthukrishnan A and Stroud C R 2000 Phys. Rev. A 62 052309
|
[25] |
Zhao J, Tan X S, Lan D, Wu H T, Xue G M, Yu H F and Yu Y 2017 Phys. Status Solidi B 254 1600640
|
[26] |
Rigetti C, Gambetta J M, Poletto S, Plourde B L T, Chow J M, Córcoles A D, Smolin J A, Merkel S T, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2012 Phys. Rev. B 86 100506
|
[27] |
You J Q and Nori F 2003 Phys. Rev. B 68 064509
|
[28] |
Bianchetti R, Filipp S, Baur M, Fink J M, Lang C, Steffen L, Boissonneault M, Blais A and Wallraff A 2010 Phys. Rev. Lett. 105 223601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|