Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060305    DOI: 10.1088/1674-1056/27/6/060305
GENERAL Prev   Next  

Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit

Kunzhe Dai(戴坤哲)1, Peng Zhao(赵鹏)1, Mengmeng Li(李蒙蒙)1, Xinsheng Tan(谭新生)1, Haifeng Yu(于海峰)1,2, Yang Yu(于扬)1,2
1 National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China;
2 Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

A quantum algorithm provides a new way in solving certain computing problems and usually faster than classical algorithms. Here we report an implementation of a quantum algorithm to determine the parity of permutation in a single three-dimensional (3D) superconducting transmon qutrit system. The experiment shows the capacity to speed up in a qutrit, which can also be extended to a multi-level system for solving high-dimensional permutation parity determination problem.

Keywords:  quantum algorithm      qutrit      superconducting quantum computing  
Received:  12 February 2018      Revised:  22 March 2018      Accepted manuscript online: 
PACS:  03.67.Ac (Quantum algorithms, protocols, and simulations)  
  03.67.Lx (Quantum computation architectures and implementations)  
  85.25.-j (Superconducting devices)  
Fund: 

Project supported by the National Key Basic Research and Development Program of China (Grant No.2016YFA0301802) and the National Natural Science Foundation of China (Grant Nos.11504165,11474152,and 61521001).

Corresponding Authors:  Xinsheng Tan, Haifeng Yu     E-mail:  txs.nju@gmail.com;hfyu@nju.edu.cn

Cite this article: 

Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬) Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit 2018 Chin. Phys. B 27 060305

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge:Cambridge University Press)
[2] Montanaro A 2016 npj Quantum Information 2 15023
[3] Cleve R, Ekert A, Macchiavello C and Mosca M 1998 Proc. R. Soc. Lond. A 454 339
[4] Deutsch D and Jozsa R 1992 Proc. R. Soc. Lond. A 439 553
[5] Shor P W 1997 SIAM J. Comput. 26 1484
[6] Grover L K 1997 Phys. Rev. Lett. 79 325
[7] Farhi E, Goldstone J, Gutmann S, Lapan J, Lundgren A and Preda D 2001 Science 292 472
[8] Han K H, Kim J H 2000 Proceedings of the Congress on Evolutionary Computation, July, 2000, pp. 1354-1360
[9] Kassal I, Jordan S P, Love P, Mohseni M and Aspuruguzik A 2008 Proc. Natl. Acad. Sci. USA 105 18681
[10] Ambainis A 2007 SIAM J. Comput. 37 210
[11] Howard M J, Wallman J J, Veitch V and Emerson J 2014 Nature 510 351
[12] Zhang X, Um M, Zhang J H,An S M, Wang Y, Deng D L, Shen C, Duan L M and Kim K 2013 Phys. Rev. Lett. 110 070401
[13] Den N and Maarten V Phys. Rev. Lett. 2013 110 060504
[14] Dogra S, Arvind and Dorai K 2014 Phys. Lett. A 378 3452
[15] Gedik Z, Silva I A,Cakmak B, Karpat G, Vidoto E L G, Soarespinto D O, Deazevedo E R and Fanchini F F 2015 Sci. Rep. 5 14671
[16] Wang F R, Wang Y L, Liu R F, Chen D X, Zhang P, Gao H and Li F L 2015 Sci. Rep. 5 10995
[17] Zhan X, Li J, Qin H, Bian Z H and Xue P 2015 Opt. Express 23 18422
[18] Kochen S and Specker E P 1967 J. Math. Mech. 17 59
[19] Tan X S, Zhao Y X, Liu Q, Xue G M, Yu H F, Wang Z D and Yu Y 2017 npj Quantum Materials 2 s41535
[20] Houck A, Türeci H E and Koch J 2012 Nat. Phys. 8 292
[21] Kiktenko E O, Fedorov A K, Manko O V and Manko V I 2015 Phys. Rev. A 91 042312
[22] Kiktenko E O, Fedorov A K, Strakhov A A and Manko V I 2015 Phys. Lett. A 379 1409
[23] Lanyon B P, Barbieri M, Almeida M P, Jennewein T, Ralph T C, Resch K J, Pryde G J, Obrien J L, Gilchrist A and White A 2009 Nat. Phys. 5 134
[24] Muthukrishnan A and Stroud C R 2000 Phys. Rev. A 62 052309
[25] Zhao J, Tan X S, Lan D, Wu H T, Xue G M, Yu H F and Yu Y 2017 Phys. Status Solidi B 254 1600640
[26] Rigetti C, Gambetta J M, Poletto S, Plourde B L T, Chow J M, Córcoles A D, Smolin J A, Merkel S T, Rozen J R, Keefe G A, Rothwell M B, Ketchen M B and Steffen M 2012 Phys. Rev. B 86 100506
[27] You J Q and Nori F 2003 Phys. Rev. B 68 064509
[28] Bianchetti R, Filipp S, Baur M, Fink J M, Lang C, Steffen L, Boissonneault M, Blais A and Wallraff A 2010 Phys. Rev. Lett. 105 223601
[1] Fast population transfer with a superconducting qutrit via non-Hermitian shortcut to adiabaticity
Xin-Ping Dong(董新平), Zhi-Bo Feng(冯志波), Xiao-Jing Lu(路晓静), Ming Li(李明), and Zheng-Yin Zhao(赵正印). Chin. Phys. B, 2023, 32(3): 034201.
[2] Realization of the iSWAP-like gate among the superconducting qutrits
Peng Xu(许鹏), Ran Zhang(张然), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(2): 020306.
[3] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[4] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[5] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[6] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[7] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[8] Fabrication and characterization of superconducting multiqubit device with niobium base layer
Feifan Su(宿非凡), Zhaohua Yang(杨钊华), Shoukuan Zhao(赵寿宽), Haisheng Yan(严海生), Ziting Wang(王子婷), Xiaohui Song(宋小会), Ye Tian(田野), and Shiping Zhao(赵士平). Chin. Phys. B, 2021, 30(10): 100304.
[9] Reduction of entropy uncertainty for qutrit system under non-Markov noisy environment
Xiong Xu(许雄), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(4): 040306.
[10] Quantum discord of two-qutrit system under quantum-jump-based feedback control
Chang Wang(王畅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2019, 28(12): 120302.
[11] Experimental implementation of a continuous-time quantum random walk on a solid-state quantum information processor
Maimaitiyiming Tusun(麦麦提依明·吐孙), Yang Wu(伍旸), Wenquan Liu(刘文权), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(11): 110302.
[12] Superconducting quantum bits
Wei-Yang Liu(刘伟洋), Dong-Ning Zheng(郑东宁), Shi-Ping Zhao(赵士平). Chin. Phys. B, 2018, 27(2): 027401.
[13] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[14] Nonlocal multi-target controlled—controlled gate using Greenberger–Horne–Zeilinger channel and qutrit catalysis
Chen Li-Bing (陈立冰), Lu Hong (路洪). Chin. Phys. B, 2015, 24(7): 070307.
[15] Thermal quantum and total correlations in spin-1 bipartite system
Qiu Liang (仇亮), Ye Bin (叶宾). Chin. Phys. B, 2014, 23(5): 050304.
No Suggested Reading articles found!
    PDF Preview