Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060304    DOI: 10.1088/1674-1056/27/6/060304
GENERAL Prev   Next  

Classical-driving-assisted coherence dynamics and its conservation

De-Ying Gao(高德营)1,2, Qiang Gao(高强)1, Yun-Jie Xia(夏云杰)1
1 Shandong Provincial Key Laboratory of Laser Polarization and Information Technology, Department of Physics, Qufu Normal University, Qufu 273165, China;
2 College of Dong Chang, Liaocheng University, Liaocheng 252000, China
Abstract  We investigate the quantum coherence and quantum entanglement dynamics of a classical driven single atom coupled to a single-mode cavity. It is shown that the transformation between the atomic coherence and the atom-field entanglement exists, and can be improved by adjusting the classical driving field. The joint evolution of two identical single-body systems is also studied. The results show the quantum coherence transfers among composite subsystems, and the coherence conservation of composite subsystems is obtained. Moreover, the classical driving field can be used to suppress the decay of the coherence and entanglement, owing to considering the leaky cavity. The non-Markovian dynamics of the system is also discussed finally.
Keywords:  quantum coherence      classical driving field      decoherence  
Received:  20 December 2017      Revised:  16 March 2018      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.-w (Quantum mechanics)  
  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.61675115,11204156,11574178,and 11304179),the Science and Technology Plan Projects of Shandong University,China (Grant No.J16LJ52),and the Natural Science Foundation of Shandong Province,China (Grant No.ZR2016AP09).
Corresponding Authors:  Yun-Jie Xia     E-mail:  yjxia@mail.qfnu.edu.cn

Cite this article: 

De-Ying Gao(高德营), Qiang Gao(高强), Yun-Jie Xia(夏云杰) Classical-driving-assisted coherence dynamics and its conservation 2018 Chin. Phys. B 27 060304

[1] Ekert A K 1991 Phys. Rev. Lett. 67 661
[2] Mattle K, Weinfurter H, Kwiat P G and Zeilinger A 1996 Phys. Rev. Lett. 76 4656
[3] Jennewein T, Simon C, Weihs G, Weinfurter H and Zeilinger A 2000 Phys. Rev. Lett. 84 4729
[4] Boschi D, Branca S, De Martini F, Hardy L and Popescu S 1998 Phys. Rev. Lett. 80 1121
[5] Pan J W, Bouwmeester D, Weinfurter H and Zeilinger A 1998 Phys. Rev. Lett. 80 3891
[6] Karpat G, Çakmak B and Fanchini F F 2014 Phys. Rev. B 90 104431
[7] Çakmak B, Karpat G and Fanchini F F 2015 Entropy 17 790
[8] Prillwitz K V, Rudnicki L and Mintert F 2015 Phys. Rev. A 92 052114
[9] Bera M N, Qureshi T, Siddiqui M A and Pati A K 2015 Phys. Rev. A 92 012118
[10] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[11] Levi F and Mintert F A 2014 New J. Phys. 16 033007
[12] Chitambar E and Gour G 2016 Phys. Rev. Lett. 117 030401
[13] Winter A and Yang D 2016 Phys. Rev. Lett. 116 120404
[14] Yu X D, Zhang D J, Xu G F and Tong D M 2016 Phys. Rev. A 94 060302
[15] Rana S, Parashar P and Lewenstein M 2016 Phys. Rev. A 93 012110
[16] Bromley T R, Cianciaruso M and Adesso G 2015 Phys. Rev. Lett. 114 210401
[17] Yang L W and Xia Y J 2016 Chin. Phys. B 25 110303
[18] Liu Y, Zou H M and Fang M F 2018 Chin. Phys. B 27 010304
[19] Streltsov A, Singh U, Dhar H S, Bera M N and Adesso G 2015 Phys. Rev. Lett. 115 020403
[20] Hu M L and Fan H 2017 Phys. Rev. A 95 052106
[21] Raithel G, Wagner C, Walther H, Narducci LM and Scully M O 1994 Cavity Quantum Electrodynamics, Advances in Atomic, molecular and Optical Physics (New York)
[22] Rainmond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[23] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112
[24] Solano E, Agarwal G S and Walther H 2003 Phys. Rev.Lett. 90 027903
[25] Mirza I M and Schotland J C 2016 Phys. Rev. A 94 012302
[26] Mirza I M and Schotland J C 2016 Phys. Rev. A 94 012309
[27] Olayacastro A, Johnson N F and Quiroga L 2005 Phys. Rev. Lett. 94 110502
[28] Zheng S B 2001 Phys. Rev. Lett. 87 230404
[29] Lewenstein M and Mossberg T W 1988 Phys. Rev. A 37 2048
[30] Alsing P, Guo D and Carmichael H J 1992 Phys. Rev. A 45 5135
[31] ZhangY J, Han W, Xia Y J and Fan H 2017 Ann. Phys. 379 187
[32] Xiao X, Fang M F and Li Y L 2010 J. Phys. B:At. Mol. Opt. Phys. 43 185505
[33] Liao Q H, Zhang Q, Xu J, Yan Q R, Liu Y and Chen A 2016 Commun. Theor. Phys. 65 684
[34] Zhang J S, Xu J B and Lin Q 2009 Eur. Phys. J. D 51 283
[35] Solano E, Agarwal G S and Walther H 2003 Phys. Rev. Lett. 90 027903
[36] Liu Y X, Sun C P and Nori F 2006 Phys. Rev. A 74 052321
[37] Berry D W and Sanders B C 2003 J. Phys. A:Math. Gen. 36 12255
[38] Nha H and Carmichael H J 2004 Phys. Rev. Lett. 93 120408
[39] Di Fidio C, Vogel W, Khanbekyan M and Welsch D G 2008 Phys. Rev. A 77 043822
[40] Napoli C, Bromley T R, Cianciaruso M, Piani M and Johnston N 2016 Phys. Rev. Lett. 116 150502.
[41] Yönac M, Yu T and Eberly J H 2006 J. Phys. B:At. Mol. Opt. Phys. 39 S621
[42] Yönac M, Yu T and Eberly J H 2007 J. Phys. B:At. Mol. Opt. Phys. 40 S45
[43] Zhang Y J, Man Z X and Xia Y J 2009 Eur. Phys. J. D 55 173
[44] Chan S, Reid M D and Ficek Z 2009 J. Phys. B:At. Mol. Opt. Phys. 42 065507
[45] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett. 103 210401
[46] Varcoe B T H, Brattke S, Weidinger M and Walther H 2000 Nature 403 743
[47] Pinkse P W H, Fischer T, Maunz P and Rempe G 2000 Nature 404 365
[48] Guthöhrlein G R, Keller M, Hayasaka K, Lange W and Walther H 2001 Nature 414 49
[49] Jonathan D and Plenio M B 2001 Phys. Rev. Lett. 87 127901
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Enhancement of charging performance of quantum battery via quantum coherence of bath
Wen-Li Yu(于文莉), Yun Zhang(张允), Hai Li(李海), Guang-Fen Wei(魏广芬), Li-Ping Han(韩丽萍), Feng Tian(田峰), and Jian Zou(邹建). Chin. Phys. B, 2023, 32(1): 010302.
[3] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[4] Theoretical study on the exciton dynamics of coherent excitation energy transfer in the phycoerythrin 545 light-harvesting complex
Xue-Yan Cui(崔雪燕), Yi-Jing Yan(严以京), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(1): 018201.
[5] Steered coherence and entanglement in the Heisenberg XX chain under twisted boundary conditions
Yu-Hang Sun(孙宇航) and Yu-Xia Xie(谢玉霞). Chin. Phys. B, 2021, 30(7): 070303.
[6] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[7] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[8] Quantifying coherence with dynamical discord
Lian-Wu Yang(杨连武) and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(12): 120304.
[9] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[10] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[11] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[12] The effect of phase fluctuation and beam splitter fluctuation on two-photon quantum random walk
Zijing Zhang(张子静), Feng Wang(王峰), Jie Song(宋杰), Yuan Zhao(赵远). Chin. Phys. B, 2020, 29(2): 020503.
[13] Generation of atomic spin squeezing via quantum coherence: Heisenberg-Langevin approach
Xuping Shao(邵旭萍). Chin. Phys. B, 2020, 29(12): 124206.
[14] Coherence measures based on sandwiched Rényi relative entropy
Jianwei Xu(胥建卫). Chin. Phys. B, 2020, 29(1): 010301.
[15] Dipole-dipole interactions enhance non-Markovianity and protect information against dissipation
Munsif Jan, Xiao-Ye Xu(许小冶), Qin-Qin Wang(王琴琴), Zhe Chen(陈哲), Yong-Jian Han(韩永建), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿). Chin. Phys. B, 2019, 28(9): 090303.
No Suggested Reading articles found!