Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060303    DOI: 10.1088/1674-1056/27/6/060303
GENERAL Prev   Next  

Quantum estimation of detection efficiency with no-knowledge quantum feedback

Dong Xie(谢东), Chunling Xu(徐春玲)
Faculty of Science, Guilin University of Aerospace Technology, Guilin 541004, China
Abstract  We investigate that no-knowledge measurement-based feedback control is utilized to obtain the estimation precision of the detection efficiency. We show that no-knowledge measurement is the optimal way to estimate the detection efficiency. The higher precision can be achieved for the lower or larger detection efficiency. It is found that no-knowledge feedback can be used to cancel decoherence. No-knowledge feedback with a high detection efficiency can perform well in estimating frequency and detection efficiency parameters simultaneously; simultaneous estimation is better than independent estimation given by the same probes.
Keywords:  no-knowldege feedback      parameter estimation      simultaneous measurement  
Received:  06 December 2017      Revised:  25 March 2018      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.11747008) and the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China (Grant No.2016GXNSFBA380227).
Corresponding Authors:  Dong Xie     E-mail:  txs.xiedong@mail.ustc.edu.cn

Cite this article: 

Dong Xie(谢东), Chunling Xu(徐春玲) Quantum estimation of detection efficiency with no-knowledge quantum feedback 2018 Chin. Phys. B 27 060303

[1] Giovannetti V, Lloyd S and Maccone L 2006 Phys. Rev. Lett. 96 010401
[2] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[3] Xie D and Wang A M 2014 Phys. Lett. A 378 2079
[4] Zheng Q, Yang H Y and Zhi Q J 2017 Chin. Phys. B 26 010601
[5] Hinkley N, Sherman J A, Phillips N B, Schioppo M, Lemke N D, Beloy K, Pizzocaro M, Oates C W and Ludlow A D 2013 Science 341 1215
[6] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[7] Bongs K, Launay R and Kasevich M A 2006 Appl. Phys. B 84 599
[8] Carlton P M, Boulanger J, Kervrann C, Sibarita J B, Salamero J, Gordon-Messer S, Bressan D, Haber J E, Haase S and Shao L 2010 Proc. Natl. Acad. Sci. USA 107 16016
[9] Taylor M A, Janousek J, Daria V, Knittel J, Hage B, Bachor H A and Bowen W P 2013 Nat. Photon. 7 229
[10] The LIGO Scientific Collaboration 2011 Nat. Phys. 7 962
[11] Aasi J, Abadie J, Abbott B P, et al. 2013 Nat. Photon. 7 613
[12] Helstrom C W 1976 Quantum Detection and Estimation Theory (New York:Academic Press)
[13] Braunstein S L and Caves C M 1994 Phys. Rev. Lett. 72 3439
[14] Caves C M 1981 Phys. Rev. D 23 1693
[15] Ma S Q, Zhu H J and Zhang G F 2017 Phys. Lett. A 381 1386
[16] Berry D W, Wiseman H M 2002 Phys. Rev. A 65 043803
[17] Wiseman H M 1994 Phys. Rev. A 49 2133
[18] Wiseman H M and Milburn G J 1993 Phys. Rev. Lett. 70 548
[19] Yamamoto N 2005 Phys. Rev. A 72 024104
[20] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press)
[21] Robins N P, Altin P A, Debs J E and Close J D 2013 Phys. Rep. 529 265
[22] Szigeti S S, Carvalho A R R, Morley J G and Hush M R 2014 Phys. Rev. Lett. 113 020407
[23] Szczykulska M, Baumgratz T and Datta A 2016 Adv. Phys.:X 1 621
[24] Ragy S, Jarzyna M and Demkowicz-Dobrzanski R 2016 Phys. Rev. A 94 052108
[25] Dittmann J 1999 J. Phys. A:Math. Gen. 32 2663
[26] Zhong W, Sun Z, Ma J, Wang X G and Nori F 2013 Phys. Rev. A 87 022337
[27] Jiang Z 2014 Phys. Rev. A 89 032128
[28] Wiseman H M and Milburn G J 2010 Quantum Measurement and Control (Cambridge:Cambridge University Press)
[29] Braginsky V B and Khalili F Y 1996 Rev. Mod. Phys. 68 1
[30] Wiseman H M and Milburn G J 1993 Phys. Rev. A 47 642
[31] Carvalho A R R and Santos M F 2011 New J. Phys. 13 013010
[32] Zhang L, Kam W C C 2017 Phys. Rev. A 95 032321
[33] Cianciaruso M, Maniscalco S and Adesso G 2017 Phys. Rev. A 96 012105
[34] Lampo A, Tuziemski J, Lewenstein M and Korbicz J K 2017 Phys. Rev. A 96 012120
[1] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[2] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[3] New multiplexed system for synchronous measurement of out-of-plane deformation and two orthogonal slopes
Yonghong Wang(王永红), Xiao Zhang(张肖), Qihan Zhao(赵琪涵), Yanfeng Yao(姚彦峰), Peizheng Yan(闫佩正), and Biao Wang(王标). Chin. Phys. B, 2022, 31(3): 034202.
[4] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[5] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[6] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[7] Quantum parameter estimation in a spin-boson dephasing quantum system by periodical projective measurements
Le Yang(杨乐), Hong-Yi Dai(戴宏毅), Ming Zhang(张明). Chin. Phys. B, 2018, 27(4): 040601.
[8] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[9] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
[10] Enhancing parameter precision of optimal quantum estimation by quantum screening
Huang Jiang(黄江), Guo You Neng(郭有能), Xie Qin(谢钦). Chin. Phys. B, 2016, 25(2): 020303.
[11] Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Ke (曾可). Chin. Phys. B, 2015, 24(11): 114201.
[12] Simultaneous density and velocity measurements in a supersonic turbulent boundary layer
He Lin (何霖), Yi Shi-He (易仕和), Tian Li-Feng (田立丰), Chen Zhi (陈植), Zhu Yang-Zhu (朱杨柱). Chin. Phys. B, 2013, 22(2): 024704.
[13] Reliability of linear coupling synchronization of hyperchaotic systems with unknown parameters
Li Fan (李凡), Wang Chun-Ni (王春妮), Ma Jun (马军). Chin. Phys. B, 2013, 22(10): 100502.
[14] Parameter estimation for chaotic systems using the cuckoo search algorithm with an orthogonal learning method
Li Xiang-Tao(李向涛) and Yin Ming-Hao(殷明浩) . Chin. Phys. B, 2012, 21(5): 050507.
[15] Parameter estimation for chaotic systems with and without noise using differential evolution-based method
Li Nian-Qiang (李念强), Pan Wei (潘炜), Yan Lian-Shan (闫连山), Luo Bin (罗斌), Xu Ming-Feng (徐明峰), Jiang Ning (江宁). Chin. Phys. B, 2011, 20(6): 060502.
No Suggested Reading articles found!