Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(11): 114201    DOI: 10.1088/1674-1056/24/11/114201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs

Wang Guo-You (王国友)a b, Guo You-Neng (郭有能)c, Zeng Ke (曾可)c
a College of Science, Hunan University of Technology, Zhuzhou 412008, China;
b Key Laboratory of Low-dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China;
c Department of Electronic and Communication Engineering, Changsha University, Changsha 410003, China
Abstract  We consider the optimal parameter estimation for a two-level system coupled to multiple bosonic reservoirs. By using quantum Fisher information (QFI), we investigate the effect of the Markovian reservoirs’ number N on QFI in both weak and strong coupling regimes for a two-level system surrounded by N zero-temperature reservoirs of field modes initially in the vacua. The results show that the dynamics of QFI non-monotonically decays to zero with revival oscillations at some time in the weak coupling regime depending on the reservoirs’ parameters. Furthermore, we also present the relations between the QFI flow, the flows of energy and information, and the sign of the decay rate to gain insight into the physical processes characterizing the dynamics.
Keywords:  quantum Fisher information      parameter estimation      decay rate  
Received:  12 April 2015      Revised:  26 May 2015      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2014B194) and the Scientific Research Foundation of Hunan Provincial Education Department, China (Grant No. 13C039).
Corresponding Authors:  Guo You-Neng     E-mail:  guoxuyan2007@163.com

Cite this article: 

Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Ke (曾可) Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs 2015 Chin. Phys. B 24 114201

[1] Fisher R A;1925 Proc. Cambridge Philos. Soc. 22 900
[2] Cramer H 1946 Mathematical Methods of Statistics (Princeton: Princeton University Press)
[3] Li N and Luo S L;2013 Phys. Rev. A 88 014301
[4] Lu X M, Wang X G and Sun C P;2010 Phys. Rev. A 82 042103
[5] Luo S L;2003 Phys. Rev. Lett. 91 180403
[6] Watanabe Y, Sagawa T and Ueda M;2011 Phys. Rev. A 84 042121
[7] Higgins B L, Berry D W, Bartlett S D, Wiseman H M and Pryde G J;2007 Nature 450 393
[8] Wang X Q, Ma J, Zhang X H and Wang X G;2011 Chin. Phys. B 20 050510
[9] Demkowicz-Dobrzanski R, Dorner U, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley I A;2009 Phys. Rev. A 80 013825
[10] Pinel O, Jian P, Treps N, Fabre C and Braun D;2013 Phys. Rev. A 88 040102
[11] Zhong W, Liu J, Ma J and Wang X G;2014 Chin. Phys. B 23 060302
[12] Zhang Y M, Li X W, Yang W and Jin G R;2013 Phys. Rev. A 88 043832
[13] Sun Z, Ma J, Lu X and Wang X G;2010 Phys. Rev. A 82 022306
[14] Ma J, Huang Y, Wang X G and Sun C P;2011 Phys. Rev. A 84 022302
[15] Zheng Q, Yao Y and Li Y;2014 Eur. Phys. J. D 68 170
[16] Zhong W, Ma J, Liu J and Wang X G;2014 Chin. Phys. B 23 090305
[17] Yao Y, Xiao X, Ge L, Wang X G and Sun C P;2014 Phys. Rev. A 89 042336
[18] Yao Y, Ge L, Xiao X, Wang X G and Sun C P;2014 Phys. Rev. A 90 062113
[19] Abdel-Khalek S;2014 Ann. Phys. 351 952
[20] Berrada K;2015 J. Opt. Soc. Am. B 32 571
[21] Zheng Q, Ge L, Yao Y and Zhi Q j;2015 Phys. Rev. A 91 033805
[22] He Z and Yao C M;2014 Chin. Phys. B 23 110601
[23] Zhong W, Sun Z, Ma J, Wang X G and Nori F;2013 Phys. Rev. A 87 022337
[24] Berrada K;2013 Phys. Rev. A 88 035806
[25] Man Z X, An N B and Xia Y J;2014 Phys. Rev. A 90 062104
[26] Man Z X, An N B and Xia Y J;2015 Opt. Express 23 5763
[27] Li J G, Zou J and Shao B;2010 Phys. Rev. A 81 062124
[28] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systes (Oxford: Oxford University Press)
[29] Abdel- Khalek S, Berrada K and Obada A S F;2012 Eur. Phys. J. D 66 69
[30] Berrada K, Abdel-Khalek S and Obada A S F;2012 Phys. Lett. A 376 1412
[31] Abdel-Khalek S;2013 Quantum Information Processing 12 761
[32] Giovannetti V, Lloyd S and Maccone L;2006 Phys. Rev. Lett. 96 010401
[33] Dorner U, Demkowicz R, Smith B J, Lundeen J S, Wasilewski W, Banaszek K and Walmsley A;2009 Phys. Rev. Lett. 102 040403
[1] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[2] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[3] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[4] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[5] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[6] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[7] Theoretical verification of intermolecular hydrogen bond induced thermally activated delayed fluorescence in SOBF-Ome
Mu-Zhen Li(李慕臻), Fei-Yan Li(李飞雁), Qun Zhang(张群), Kai Zhang(张凯), Yu-Zhi Song(宋玉志), Jian-Zhong Fan(范建忠), Chuan-Kui Wang(王传奎), and Li-Li Lin(蔺丽丽). Chin. Phys. B, 2021, 30(12): 123302.
[8] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[9] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[10] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[11] Quantum estimation of detection efficiency with no-knowledge quantum feedback
Dong Xie(谢东), Chunling Xu(徐春玲). Chin. Phys. B, 2018, 27(6): 060303.
[12] Quantum parameter estimation in a spin-boson dephasing quantum system by periodical projective measurements
Le Yang(杨乐), Hong-Yi Dai(戴宏毅), Ming Zhang(张明). Chin. Phys. B, 2018, 27(4): 040601.
[13] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[14] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
[15] Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
Qian-Kun Gong(龚乾坤), Dong Li(李栋), Chun-Hua Yuan(袁春华), Ze-Yu Qu(区泽宇), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2017, 26(9): 094205.
No Suggested Reading articles found!