Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 024704    DOI: 10.1088/1674-1056/22/2/024704
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Simultaneous density and velocity measurements in a supersonic turbulent boundary layer

He Lin (何霖), Yi Shi-He (易仕和), Tian Li-Feng (田立丰), Chen Zhi (陈植), Zhu Yang-Zhu (朱杨柱)
College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  A novel technique for simultaneous measurements of instantaneous whole-field density and velocity fields of supersonic flows has been developed. The density measurement is performed based on the nano-tracer planar laser scattering (NPLS) technique, while the velocity measurement is carried out using particle image velocimetry (PIV). The present experimental technique has been applied to a flat-plate turbulent boundary layer at Mach 3, and the measurement accuracy of the density and velocity are discussed. Based on this new technique, the Reynolds stress distributions were also obtained, demonstrating that this is an effective means for measuring Reynolds stresses under compressible conditions.
Keywords:  simultaneous measurements      density      velocity      Reynolds stress  
Received:  27 June 2012      Revised:  23 August 2012      Accepted manuscript online: 
PACS:  47.40.Ki (Supersonic and hypersonic flows)  
  47.27.nb (Boundary layer turbulence ?)  
  47.80.Jk (Flow visualization and imaging)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2009CB724100) and the National Natural Science Foundation of China (Grant No. 11172326).
Corresponding Authors:  Yi Shi-He     E-mail:  ysh_1819@yahoo.com.cn

Cite this article: 

He Lin (何霖), Yi Shi-He (易仕和), Tian Li-Feng (田立丰), Chen Zhi (陈植), Zhu Yang-Zhu (朱杨柱) Simultaneous density and velocity measurements in a supersonic turbulent boundary layer 2013 Chin. Phys. B 22 024704

[1] Fujii S, Gomi M and Equchi K 1983 J. Fluids Eng. 105 128
[2] Fujii S, Gomi M, Equchi K, Yamayuchi S and Jin L 1984 Combust. Sci. Technol. 36 211
[3] Goss L P, Trump D D and Roquemore W M 1984 AIAA J. 84 1458
[4] Goss L P, Trump D D and Roquemore W M 1988 Exp. Fluids 6 189
[5] Bram R D, Seller E T, LaRue J C and Samuelsen G S 1983 AIAA Paper 83-0334
[6] Heitor M V, Taylor A M K P and Whitelaw J H 1985 Exp. Fluids 3 323
[7] Tagawa M, Nagaya S and Ohta Y 2001 Exp. Fluids 30 143
[8] Li F C, Wang D Z, Kawaguchi Y and Hishida K 2004 Exp. Fluids 36 131
[9] Yin J, Yu L Y, Liu X, Wan H, Lin Z Y and Niu H B 2011 Chin. Phys. B 20 014206
[10] Lemoine F, Antoine Y, Wolff M and Lebouche M 1999 Exp. Fluids 26 315
[11] Fujisawa N, Funatani S and Katoh N 2005 Exp. Fluids 38 291
[12] Ke J and Bohl D 2011 Exp. Fluids 50 465
[13] Webster D R, Roberts P J and Ráad L 2001 Exp. Fluids 30 65
[14] Cowen E A, Chang K A and Liao Q 2001 Exp. Fluids 31 63
[15] Borg A, Bolinder J and Fuchs L 2001 Exp. Fluids 31 140
[16] Feng H, Olsen M G, Hill J C and Fox R O 2007 Exp. Fluids 42 847
[17] Konle M, Kiesewetter F and Sattelmayer T 2008 Exp. Fluids 44 529
[18] Zarruk A G and Cowen E A 2008 Exp. Fluids 44 865
[19] Cessou A, Varea E, Criner K, Godard G and Vervisch P 2012 Exp. Fluids 52 905
[20] Sarathi P, Gurka R, Kopp G A and Sullivan P J 2012 Exp. Fluids 52 247
[21] Ramaprabhu P and Andrews M J 2003 Exp. Fluids 34 98
[22] Horner-Devine A R 2006 Exp. Fluids 14 559
[23] Balakumar B J, Orlicz G C, Tomkins C D and Prestridge K P 2008 Phys. Fluids 20 124103
[24] Xu D and Chen J 2012 Exp. Fluids 53 145
[25] He L, Yi S H, Zhao Y X, Tian L F and Chen Z 2011 Sci. Chin. G: Phys. Mech. Astron. 54 1702
[26] Zhao Y X, Yi S H, Tian L F, He L and Cheng Z Y 2009 Sci. Chin. E: Tech. Sci. 52 3640
[27] Tian L F, Yi S H, Zhao Y X, He L and Cheng Z Y 2009 Sci. Chin. G: Phys. Mech. Astron. 52 1357
[28] Zhao Y X, Yi S H, Tian L F, He L and Cheng Z Y 2010 Sci. Chin. E: Tech. Sci. 53 584
[29] Zhao Y X, Yi S H, Tian L F, He L and Cheng Z Y 2010 Chin. Sci. Bull. 55 2004
[30] van Driest E R 1956 Journal of the Aeronautical Sciences 23 1007
[31] Gatski T B and Erlebacher G 2002 NASA Tech. Memo. 2002-211934
[32] Ringuette M J, Wu M and Martin M P 2008 J. Fluid Mech. 594 59
[33] Wu M and Martin M P 2007 AIAA Journal 45 879
[34] Humble R A, Scarano F and van Oudheusden B W 2006 AIAA Paper 2006-3361
[35] Spina E F and Smits A J 1987 J. Fluid Mech. 182 85
[36] Morkovin M V 1962 Mćanique de la Turbulence, ed. Favre A CNRS 367
[37] White F M 1974 Viscous Fluid Flow (New York: McGraw-Hill)
[38] Smits A J, Spina E F, Alving A E, Smith R W, Fernando E M and Donovan J F 1989 Phys. Fluids A 1 1865
[39] Muck K, Spina E and Smits A 1984 Report No. MAE-1642
[40] Urbin G, Knight D and Zheltovodov A A 1999 AIAA Paper 99-0427
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[3] Vortex bound states influenced by the Fermi surface anisotropy
Delong Fang(方德龙). Chin. Phys. B, 2023, 32(3): 037403.
[4] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[5] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[6] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[7] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[8] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[9] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[10] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[11] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[12] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[13] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[14] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[15] Charge density wave states in phase-engineered monolayer VTe2
Zhi-Li Zhu(朱知力), Zhong-Liu Liu(刘中流), Xu Wu(武旭), Xuan-Yi Li(李轩熠), Jin-An Shi(时金安), Chen Liu(刘晨), Guo-Jian Qian(钱国健), Qi Zheng(郑琦), Li Huang(黄立), Xiao Lin(林晓), Jia-Ou Wang(王嘉欧), Hui Chen(陈辉), Wu Zhou(周武), Jia-Tao Sun(孙家涛), Ye-Liang Wang(王业亮), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(7): 077101.
No Suggested Reading articles found!