Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060302    DOI: 10.1088/1674-1056/27/6/060302
GENERAL Prev   Next  

Quantum speed-up capacity in different types of quantum channels for two-qubit open systems

Wei Wu(吴薇)1, Xin Liu(刘辛)1, Chao Wang(王超)2
1 Department of Physics, School of Science, Wuhan University of Technology(WUT), Wuhan 430070, China;
2 School of Engineering and Digital Arts, University of Kent, Canterbury, United Kingdom
Abstract  A potential acceleration of a quantum open system is of fundamental interest in quantum computation, quantum communication, and quantum metrology. In this paper, we investigate the “quantum speed-up capacity” which reveals the potential ability of a quantum system to be accelerated. We explore the evolutions of the speed-up capacity in different quantum channels for two-qubit states. We find that although the dynamics of the capacity is varying in different kinds of channels, it is positive in most situations which are considered in the context except one case in the amplitude-damping channel. We give the reasons for the different features of the dynamics. Anyway, the speed-up capacity can be improved by the memory effect. We find two ways which may be used to control the capacity in an experiment:selecting an appropriate coefficient of an initial state or changing the memory degree of environments.
Keywords:  quantum speed-up capacity      quantum speed limit      two-qubit open systems      quantum channel      memory effect  
Received:  16 November 2017      Revised:  19 February 2018      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
Fund: Project supported by the EU FP7 Marie-Curie Career Integration Fund (Grant No.631883)(for Chao Wang),the Royal Society Research Fund (Grant No.RG150036),and the Fundamental Research Fund for the Central Universities,China (Grant No.2018IB010)(for Xin Liu and Wei Wu).
Corresponding Authors:  Xin Liu     E-mail:  lxheroes@126.com

Cite this article: 

Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超) Quantum speed-up capacity in different types of quantum channels for two-qubit open systems 2018 Chin. Phys. B 27 060302

[1] Anandan J and Aharonov Y 1990 Phys. Rev. Lett. 65 1697
[2] Levitin L B and Toffoli T 2009 Phys. Rev. Lett. 103 160502
[3] Jones P J and Kok P 2010 Phys. Rev. A 82 022107
[4] Zwierz M 2012 Phys. Rev. A 86 016101
[5] Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Phys. Rev. Lett. 110 050402
[6] del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403
[7] Lloyd S 2000 Nature 406 1047
[8] Lloyd S 2002 Phys. Rev. Lett. 88 237901
[9] Bekenstein J D 1981 Phys. Rev. Lett. 46 623
[10] Yung M H 2006 Phys. Rev. A 74 030303(R)
[11] Caneva T, Murphy M, Calarco T, Fazio R, Montangero S, Giovannetti V and Santoro G E 2009 Phys. Rev. Lett. 103 240501
[12] Hegerfeldt G C 2013 Phys. Rev. Lett. 111 260501
[13] Hegerfeldt G C 2014 Phys. Rev. A 90 032110
[14] Deffner S 2014 J. Phys. B:At. Mol. Opt. Phys. 47 145502
[15] Giovanetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[16] Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
[17] Tsang M 2013 New J. Phys. 15 073005
[18] Giovannetti V, Lloyd S and Maccone L 2003 Phys. Rev. A 67 052109
[19] Luo S 2004 Physica D 189 1
[20] Deffner S and Lutz E 2013 J. Phys. A:Math. Theor. 46 335302
[21] Russell B and Stepney S 2014 Phys. Rev. A 90 012303
[22] Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
[23] Latune C L, Escher B M, de Matos Filho R L and Davidovich L 2013 Phys. Rev. A 88 042112
[24] Xu Z Y, Luo S, Yang W L, Liu C and Zhu S 2014 Phys. Rev. A 89 012307
[25] Xu Z Y and Zhu S 2014 Chin. Phys. Lett. 31 020301
[26] Mandelstam L and Tamm I 1945 J. Phys. (USSR) 9 249
[27] Margolus N and Levitin L B 1998 Physica D 120 188
[28] Liu C, Xu Z Y and Zhu S 2015 Phys. Rev. A 91 022102
[29] Pfeifer P and Frohlich J 1995 Rev. Mod. Phys. 67 759
[30] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112
[31] Liu X, Wu W and Wang C 2017 Phys. Rev. A 95 052118
[32] Bhatia R 1997 Matrix Analysis (Berlin:Springer)
[33] Kraus K 1983 State, Effect, and Operations:Fundamental Notions in Quantum Theory (Berlin:Springer)
[34] Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H and Davidovich L 2008 Phys. Rev. A 78 022322
[35] Fanchini F F, Karpat G, Castelano L K and Rossatto D Z 2013 Phys. Rev. A 88 012105
[36] Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002
[37] Vasile R, Maniscalco S, Paris M G A, Breuer H P and Piilo J 2011 Phys. Rev. A 84 052118
[38] Bylicka B, Johansson M and Acín A 2017 Phys. Rev. Lett. 118 120501
[39] Ferialdi L 2017 Phys. Rev. A 95 020101(R)
[40] Sampaio R, Suomela S, Schmidt R and Ala-Nissila T 2017 Phys. Rev. A 95 022120
[41] Haikka P, Johnson T H and Maniscalco S 2013 Phys. Rev. A 87 010103(R)
[42] Nielsen M A and Chuang I L 2000 Quantum Compution and Quantum Information (Cambridge:Cambridge University Press)
[43] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[44] von Neumann J 1937 Tomsk Univ. Rev. 1 286
[45] Mirsky L 1975 Monatshefte für Math. 79 303
[46] Liu H B, Yang W L, An J H and Xu Z Y 2016 Phys. Rev. A 93 020105(R)
[47] Cimmarusti A D, Patterson Z, B D, Corcos L P, Orozco L A and Deffner S 2015 Phys. Rev. Lett. 114 233602
[48] Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112
[49] Noda S, Fujita M and Asano T 2007 Nat. Photon. 1 449
[50] Porras D, Marquardt F, von Delft J and Cirac J I 2008 Phys. Rev. A 78 010101(R)
[51] Dreisow F, Szameit A, Heinrich M, Pertsch T, Nolte S, Tünnermann A and Longhi S 2008 Phys. Rev. Lett. 101 143602
[52] Behzadi N, Ahansaz B, Ektesai A and Faizi E 2017 Phys. Rev. A 95 052121
[53] Li H, Yang M and Li D C 2016 Chin. Phys. Lett. 33 50301
[54] Tong N H and Zheng D C 2017 Chin. Phys. B 26 060502
[55] Yang G, Jin J and Nie M 2017 Chin. Phys. B 26 040305
[56] Chen H, Li C Y and Li H R 2017 Chin. Phys. B 26 037105
[57] Zheng Q, Yang H Y and Zhi Q J 2017 Chin. Phys. B 26 010601
[1] Quantum dynamical resource theory under resource non-increasing framework
Si-Ren Yang(杨思忍) and Chang-Shui Yu(于长水). Chin. Phys. B, 2023, 32(4): 040305.
[2] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[3] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
[4] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[5] Quantum speed limit for mixed states in a unitary system
Jie-Hui Huang(黄接辉), Li-Guo Qin(秦立国), Guang-Long Chen(陈光龙), Li-Yun Hu(胡利云), and Fu-Yao Liu(刘福窑). Chin. Phys. B, 2022, 31(11): 110307.
[6] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[7] Quantum speed limit for the maximum coherent state under the squeezed environment
Kang-Ying Du(杜康英), Ya-Jie Ma(马雅洁), Shao-Xiong Wu(武少雄), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(9): 090308.
[8] Nonlocal advantage of quantum coherence in a dephasing channel with memory
Ming-Liang Hu(胡明亮), Yu-Han Zhang(张宇晗), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(3): 030308.
[9] Coherent-driving-assisted quantum speedup in Markovian channels
Xiang Lu(鹿翔), Ying-Jie Zhang(张英杰), and Yun-Jie Xia(夏云杰). Chin. Phys. B, 2021, 30(2): 020301.
[10] Degenerate asymmetric quantum concatenated codes for correcting biased quantum errors
Ji-Hao Fan(樊继豪), Jun Li(李骏), Han-Wu Chen(陈汉武), and Wen-Jie Liu(刘文杰). Chin. Phys. B, 2021, 30(12): 120302.
[11] Margolus-Levitin speed limit across quantum to classical regimes based on trace distance
Shao-Xiong Wu(武少雄), Chang-Shui Yu(于长水). Chin. Phys. B, 2020, 29(5): 050302.
[12] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[13] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[14] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[15] On the time-independent Hamiltonian in real-time and imaginary-time quantum annealing
Jie Sun(孙杰)† and Songfeng Lu(路松峰)‡. Chin. Phys. B, 2020, 29(10): 100303.
No Suggested Reading articles found!