|
|
Quantum speed-up capacity in different types of quantum channels for two-qubit open systems |
Wei Wu(吴薇)1, Xin Liu(刘辛)1, Chao Wang(王超)2 |
1 Department of Physics, School of Science, Wuhan University of Technology(WUT), Wuhan 430070, China; 2 School of Engineering and Digital Arts, University of Kent, Canterbury, United Kingdom |
|
|
Abstract A potential acceleration of a quantum open system is of fundamental interest in quantum computation, quantum communication, and quantum metrology. In this paper, we investigate the “quantum speed-up capacity” which reveals the potential ability of a quantum system to be accelerated. We explore the evolutions of the speed-up capacity in different quantum channels for two-qubit states. We find that although the dynamics of the capacity is varying in different kinds of channels, it is positive in most situations which are considered in the context except one case in the amplitude-damping channel. We give the reasons for the different features of the dynamics. Anyway, the speed-up capacity can be improved by the memory effect. We find two ways which may be used to control the capacity in an experiment:selecting an appropriate coefficient of an initial state or changing the memory degree of environments.
|
Received: 16 November 2017
Revised: 19 February 2018
Accepted manuscript online:
|
PACS:
|
03.65.Yz
|
(Decoherence; open systems; quantum statistical methods)
|
|
03.65.Ta
|
(Foundations of quantum mechanics; measurement theory)
|
|
03.67.Mn
|
(Entanglement measures, witnesses, and other characterizations)
|
|
Fund: Project supported by the EU FP7 Marie-Curie Career Integration Fund (Grant No.631883)(for Chao Wang),the Royal Society Research Fund (Grant No.RG150036),and the Fundamental Research Fund for the Central Universities,China (Grant No.2018IB010)(for Xin Liu and Wei Wu). |
Corresponding Authors:
Xin Liu
E-mail: lxheroes@126.com
|
Cite this article:
Wei Wu(吴薇), Xin Liu(刘辛), Chao Wang(王超) Quantum speed-up capacity in different types of quantum channels for two-qubit open systems 2018 Chin. Phys. B 27 060302
|
[1] |
Anandan J and Aharonov Y 1990 Phys. Rev. Lett. 65 1697
|
[2] |
Levitin L B and Toffoli T 2009 Phys. Rev. Lett. 103 160502
|
[3] |
Jones P J and Kok P 2010 Phys. Rev. A 82 022107
|
[4] |
Zwierz M 2012 Phys. Rev. A 86 016101
|
[5] |
Taddei M M, Escher B M, Davidovich L and de Matos Filho R L 2013 Phys. Rev. Lett. 110 050402
|
[6] |
del Campo A, Egusquiza I L, Plenio M B and Huelga S F 2013 Phys. Rev. Lett. 110 050403
|
[7] |
Lloyd S 2000 Nature 406 1047
|
[8] |
Lloyd S 2002 Phys. Rev. Lett. 88 237901
|
[9] |
Bekenstein J D 1981 Phys. Rev. Lett. 46 623
|
[10] |
Yung M H 2006 Phys. Rev. A 74 030303(R)
|
[11] |
Caneva T, Murphy M, Calarco T, Fazio R, Montangero S, Giovannetti V and Santoro G E 2009 Phys. Rev. Lett. 103 240501
|
[12] |
Hegerfeldt G C 2013 Phys. Rev. Lett. 111 260501
|
[13] |
Hegerfeldt G C 2014 Phys. Rev. A 90 032110
|
[14] |
Deffner S 2014 J. Phys. B:At. Mol. Opt. Phys. 47 145502
|
[15] |
Giovanetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
|
[16] |
Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
|
[17] |
Tsang M 2013 New J. Phys. 15 073005
|
[18] |
Giovannetti V, Lloyd S and Maccone L 2003 Phys. Rev. A 67 052109
|
[19] |
Luo S 2004 Physica D 189 1
|
[20] |
Deffner S and Lutz E 2013 J. Phys. A:Math. Theor. 46 335302
|
[21] |
Russell B and Stepney S 2014 Phys. Rev. A 90 012303
|
[22] |
Deffner S and Lutz E 2013 Phys. Rev. Lett. 111 010402
|
[23] |
Latune C L, Escher B M, de Matos Filho R L and Davidovich L 2013 Phys. Rev. A 88 042112
|
[24] |
Xu Z Y, Luo S, Yang W L, Liu C and Zhu S 2014 Phys. Rev. A 89 012307
|
[25] |
Xu Z Y and Zhu S 2014 Chin. Phys. Lett. 31 020301
|
[26] |
Mandelstam L and Tamm I 1945 J. Phys. (USSR) 9 249
|
[27] |
Margolus N and Levitin L B 1998 Physica D 120 188
|
[28] |
Liu C, Xu Z Y and Zhu S 2015 Phys. Rev. A 91 022102
|
[29] |
Pfeifer P and Frohlich J 1995 Rev. Mod. Phys. 67 759
|
[30] |
Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112
|
[31] |
Liu X, Wu W and Wang C 2017 Phys. Rev. A 95 052118
|
[32] |
Bhatia R 1997 Matrix Analysis (Berlin:Springer)
|
[33] |
Kraus K 1983 State, Effect, and Operations:Fundamental Notions in Quantum Theory (Berlin:Springer)
|
[34] |
Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H and Davidovich L 2008 Phys. Rev. A 78 022322
|
[35] |
Fanchini F F, Karpat G, Castelano L K and Rossatto D Z 2013 Phys. Rev. A 88 012105
|
[36] |
Breuer H P, Laine E M, Piilo J and Vacchini B 2016 Rev. Mod. Phys. 88 021002
|
[37] |
Vasile R, Maniscalco S, Paris M G A, Breuer H P and Piilo J 2011 Phys. Rev. A 84 052118
|
[38] |
Bylicka B, Johansson M and Acín A 2017 Phys. Rev. Lett. 118 120501
|
[39] |
Ferialdi L 2017 Phys. Rev. A 95 020101(R)
|
[40] |
Sampaio R, Suomela S, Schmidt R and Ala-Nissila T 2017 Phys. Rev. A 95 022120
|
[41] |
Haikka P, Johnson T H and Maniscalco S 2013 Phys. Rev. A 87 010103(R)
|
[42] |
Nielsen M A and Chuang I L 2000 Quantum Compution and Quantum Information (Cambridge:Cambridge University Press)
|
[43] |
Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
|
[44] |
von Neumann J 1937 Tomsk Univ. Rev. 1 286
|
[45] |
Mirsky L 1975 Monatshefte für Math. 79 303
|
[46] |
Liu H B, Yang W L, An J H and Xu Z Y 2016 Phys. Rev. A 93 020105(R)
|
[47] |
Cimmarusti A D, Patterson Z, B D, Corcos L P, Orozco L A and Deffner S 2015 Phys. Rev. Lett. 114 233602
|
[48] |
Zhang Y J, Han W, Xia Y J, Cao J P and Fan H 2015 Phys. Rev. A 91 032112
|
[49] |
Noda S, Fujita M and Asano T 2007 Nat. Photon. 1 449
|
[50] |
Porras D, Marquardt F, von Delft J and Cirac J I 2008 Phys. Rev. A 78 010101(R)
|
[51] |
Dreisow F, Szameit A, Heinrich M, Pertsch T, Nolte S, Tünnermann A and Longhi S 2008 Phys. Rev. Lett. 101 143602
|
[52] |
Behzadi N, Ahansaz B, Ektesai A and Faizi E 2017 Phys. Rev. A 95 052121
|
[53] |
Li H, Yang M and Li D C 2016 Chin. Phys. Lett. 33 50301
|
[54] |
Tong N H and Zheng D C 2017 Chin. Phys. B 26 060502
|
[55] |
Yang G, Jin J and Nie M 2017 Chin. Phys. B 26 040305
|
[56] |
Chen H, Li C Y and Li H R 2017 Chin. Phys. B 26 037105
|
[57] |
Zheng Q, Yang H Y and Zhi Q J 2017 Chin. Phys. B 26 010601
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|