Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 040601    DOI: 10.1088/1674-1056/27/4/040601
GENERAL Prev   Next  

Quantum parameter estimation in a spin-boson dephasing quantum system by periodical projective measurements

Le Yang(杨乐)1, Hong-Yi Dai(戴宏毅)2,3, Ming Zhang(张明)1
1. College of Artificial Intelligence, National University of Defense Technology, Changsha 410073, China;
2. Department of Physics, National University of Defense Technology, Changsha 410073, China;
3. Interdisciplinary Center for Quantum Information, National University of Defense Technology, Changsha 410073, China
Abstract  In this paper, we explore how to estimate the phase damping parameter γ and the tunneling amplitude parameter from a spin-boson dephasing quantum model by periodical projective measurements. The preparation of initial states is accomplished by performing the period measurements in our scheme. The parameter γ can be always estimated when projective measurement bases are chosen as θ=π/2 and φ=0. Based on the estimated value of γ and the interval information of , we can select another measurement bases (θ=π/4 and φ=π/2) to obtain the estimated value of . A coherent control is indispensable to estimate if γ is in the interval of ; whereas the control is not necessary if γ is out of the known interval of . We establish the relation between the optimal period time and the parameter γ or in terms of Fisher information. Although the optimal measurement period cannot be selected beforehand, the aforementioned relation can be utilized to adjust the measurement period to approach the optimal one.
Keywords:  parameter estimation      periodical projective measurement      spin-boson model      dephasing quantum system  
Received:  03 November 2017      Revised:  29 January 2018      Accepted manuscript online: 
PACS:  06.20.-f (Metrology)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61673389, 61273202, and 61134008).
Corresponding Authors:  Le Yang     E-mail:  kongfuyale@126.com

Cite this article: 

Le Yang(杨乐), Hong-Yi Dai(戴宏毅), Ming Zhang(张明) Quantum parameter estimation in a spin-boson dephasing quantum system by periodical projective measurements 2018 Chin. Phys. B 27 040601

[1] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222
[2] Abbott B P, et al. 2016 Phys. Rev. Lett. 116 061102
[3] Caves C M 1981 Phys. Rev. D 23 1693
[4] Yurke B, McCall S L and Klauder J R 1986 Phys. Rev. A 33 4033
[5] Huelga S F, Macchiavello C, Pellizzari T, Ekert A K, Plenio M B and Cirac J I 1997 Phys. Rev. Lett. 79 3865
[6] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330
[7] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[8] Budker D and Romalis M 2007 Nat. Phys. 3 227
[9] Xiang G Y and Guo G C 2013 Chin. Phys. B 22 110601
[10] Escher B M, De Matos Filho R L and Davidovich L 2011 Nat. Phys. 7 406
[11] Jacobs K 2014 Quantum measurement theory and its applications (Cambridge:Cambridge University Press) p. 304
[12] Weiss U 2012 Quantum Dissipative Systems (USA:World Scientific Publishing) pp. 40, 293
[13] Le H K 2004 Phys. Rev. Lett. 92 196804
[14] Thorwart M and Hänggi P 2001 Phys. Rev. A 65 012309
[15] Costi T A and McKenzie R H 2003 Phys. Rev. A 68 034301
[16] Forn-Diaz P, Garcia-Ripoll J J, Peropadre B, Orgiazzi J L, Yurtalan M A, Belyansky R, Wilson C M and Lupascu A 2017 Nat. Phys. 13 39
[17] Kato T, Golubov A A and Nakamura Y 2007 Phys. Rev. B 76 172502
[18] Nevado P and Porras D 2013 Eur. Phys. J.-Spec. Top. 217 29
[19] Albert V V, Scholes G D and Brumer P 2011 Phys. Rev. A 84 042110
[20] Nielsen M A and Chuang I L 2010 Quantum computation and quantum information (Cambridge:Cambridge University Press) pp. 87, 383
[21] Dorner U 2012 New J. Phys. 14 043011
[22] Dorner U 2013 Phys. Rev. A 88 062113
[23] Macieszczak K, Fraas M and Demkowicz-Dobrza ń ski R 2014 New J. Phys. 16 113002
[24] Fr ö wis F, Skotiniotis M, Kraus B and D ür W 2014 New J. Phys. 16 083010
[25] Ma H M, Li D and Yuan C H, Chen L Q, Ou Z Y and Zhang W P 2015 Phys. Rev. A 92 023847
[26] Smirne A, Kolody ń ski J, Huelga S F and Demkowicz-Dobrza ń ski R 2016 Phys. Rev. Lett. 116 120801
[27] Liu Y C, Jin G R and You L 2010 Phys. Rev. A 82 045601
[28] Bar-Gill N, Rao D D B and Kurizki G 2011 Phys. Rev. Lett. 107 010404
[29] Tan Q S, Huang Y X, Kuang L M and Wang X G 2014 Phys. Rev. A 89 063604
[30] Ajoy A, Á lvarez G A and Suter D 2011 Phys. Rev. A 83 032303
[31] Ng H T and Kim K 2014 Opt. Commun. 331 353
[32] Chin A W, Huelga S F and Plenio M B 2012 Phys. Rev. Lett. 109 233601
[33] Abdel-Khalek S 2014 Ann. Phys. 351 952
[34] Boixo S and Heunen C 2012 Phys. Rev. Lett. 108 120402
[35] Wu S X and Yu C S 2017 Int. J. Theor. Phys. 56 1198
[36] Leggett A J, Chakravarty S, Dorsey A T, Fisher M P A, Garg A and Zwerger W 1987 Rev. Mod. Phys. 59 1
[37] Paz J P and Zurek W H 2001 Environment-Induced Decoherence and the Transition from Quantum to Classical. Coherent atomic matter waves (Berlin, Heidelberg:Springer) p. 564
[1] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[2] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[3] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[4] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[5] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[6] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[7] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[8] Quantum estimation of detection efficiency with no-knowledge quantum feedback
Dong Xie(谢东), Chunling Xu(徐春玲). Chin. Phys. B, 2018, 27(6): 060303.
[9] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[10] Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength
Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(11): 110303.
[11] Dynamical correlation functions of the quadratic coupling spin-Boson model
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060502.
[12] Equilibrium dynamics of the sub-Ohmic spin-boson model under bias
Da-Chuan Zheng(郑大川), Ning-Hua Tong(同宁华). Chin. Phys. B, 2017, 26(6): 060501.
[13] Enhancing parameter precision of optimal quantum estimation by quantum screening
Huang Jiang(黄江), Guo You Neng(郭有能), Xie Qin(谢钦). Chin. Phys. B, 2016, 25(2): 020303.
[14] Dynamics of quantum Fisher information in a two-level system coupled to multiple bosonic reservoirs
Wang Guo-You (王国友), Guo You-Neng (郭有能), Zeng Ke (曾可). Chin. Phys. B, 2015, 24(11): 114201.
[15] Reliability of linear coupling synchronization of hyperchaotic systems with unknown parameters
Li Fan (李凡), Wang Chun-Ni (王春妮), Ma Jun (马军). Chin. Phys. B, 2013, 22(10): 100502.
No Suggested Reading articles found!