Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 110303    DOI: 10.1088/1674-1056/27/11/110303
GENERAL Prev   Next  

Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength

Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅)
Synergetic Innovation Center for Quantum Effects and Application, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
Abstract  

By using the non-Markovian master equation, we investigate the effect of the cavity and the environment on the quantum Fisher information (QFI) of an atom qubit system in a dissipation cavity. We obtain the formulae of QFI for two different initial states and analyze the effect of the atom-cavity coupling and the cavity-reservoir coupling on the QFI. The results show that the dynamic behavior of the QFI is obviously dependent on the initial atomic states, the atom-cavity coupling, and the cavity-reservoir coupling. The stronger the atom-cavity coupling, the quicker the QFI oscillates, and the slower the QFI decreases. In particular, the QFI will tend to be a stable value rather than zero if the atom-cavity coupling is large enough. On the other hand, the smaller the cavity-reservoir coupling, the stronger the non-Markovian effect, and the slower the QFI decays. In other words, choosing the best parameter can improve the accuracy of the parameter estimation. In addition, the physical explanation of the dynamic behavior of the QFI is given by means of the QFI flow.

Keywords:  quantum Fisher information      parameter estimation      dissipative cavity  
Received:  30 May 2018      Revised:  31 August 2018      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.-a (Quantum information)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: 

Project supported by the Scientific Research Project of Hunan Provincial Education Department, China (Grant No. 16C0949), Hunan Provincial Innovation Foundation for Postgraduate, China (Grant No. CX2017B177), the National Natural Science Foundation of China (Grant No. 11374096), and the Doctoral Science Foundation of Hunan Normal University, China.

Corresponding Authors:  Hong-Mei Zou     E-mail:  zhmzc1997@hunnu.edu.cn

Cite this article: 

Danping Lin(林丹萍), Yu Liu(刘禹), Hong-Mei Zou(邹红梅) Modulating quantum Fisher information of qubit in dissipative cavity by coupling strength 2018 Chin. Phys. B 27 110303

[1] Fisher R A 1925 Math. Proc. Cambridge Philos. Soc. 22 700
[2] Cramer H 1946 Mathematical Methods of Statistics (Princeton:Princeton University Press)
[3] Holevo A S and Ballentine L E 1982 Probabilistic and Statistical Aspects of Quantum Theory (Amsterdam:North-Holland)
[4] Zhong W, Sun Z, Ma J, Wang X G and Nori F 2013 Phys. Rev. A 87 022337
[5] Tan Q S, Yuan J B, Jin G R and Kuang L M 2017 Phys. Rev. A 96 063614
[6] Ren Y K, Tang L M and Zeng H S 2016 Quantum Inf. Process. 15 5011
[7] Wang G Y, Guo Y N and Zeng K 2015 Chin. Phys. B 24 114201
[8] Ren Y K, Wang X L and Zeng H S 2018 Quantum Inf. Process. 17 5
[9] Hu Y H, Yang H F, Tan Y G and Tao Y P 2018 Int. J. Theor. Phys. 57 1148
[10] Mirkhalaf S S and Smerzi A 2017 Phys. Rev. A 95 022302
[11] Song H T, Luo S L and Hong Y 2015 Phys. Rev. A 91 042110
[12] Ban M 2015 Quantum Inf. Process. 14 4163
[13] Luo S L 2003 Phys. Rev. Lett. 91 180403
[14] Watanabe Y, Sagawa T and Ueda M 2011 Phys. Rev. A 84 042121
[15] Sun L L, Song Y S, Qiao C F, Yu S and Chen Z B 2017 Phys. Rev. A 95 022112
[16] Lu X M, Wang X and Sun C P 2010 Phys. Rev. A 82 042103
[17] Zou H M and Fang M F 2015 Quantum Inf. Process. 14 2673
[18] Jaynes E T and Cummings F W 1963 Proc. IEEE 51 89
[19] Breuer H P and Petruccione F 2007 The Theory of Open Quantum Systems (Oxford:Oxford University Press)
[20] Scala M, Militello B, Messina A, Maniscalco S, Piilo J and SuominenK A 2008 Phys. Rev. A 77 043827
[21] Zou H M and Fang M F 2016 Chin. Phys. B 25 090302
[22] Liu Y, Zou H M and Fang M F 2018 Chin. Phys. B 27 010304
[23] Pairs M G A 2009 Int. J. Quantum Inf. 7 125
[1] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[2] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[3] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[4] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[5] Quantum metrology with coherent superposition of two different coded channels
Dong Xie(谢东), Chunling Xu(徐春玲), and Anmin Wang(王安民). Chin. Phys. B, 2021, 30(9): 090304.
[6] Blind parameter estimation of pseudo-random binary code-linear frequency modulation signal based on Duffing oscillator at low SNR
Ke Wang(王珂), Xiaopeng Yan(闫晓鹏), Ze Li(李泽), Xinhong Hao(郝新红), and Honghai Yu(于洪海). Chin. Phys. B, 2021, 30(5): 050708.
[7] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[8] Effect of system-reservoir correlations on temperature estimation
Wen-Li Zhu(朱雯丽), Wei Wu(吴威), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2020, 29(2): 020501.
[9] Optimal parameter estimation of open quantum systems
Yinghua Ji(嵇英华), Qiang Ke(柯强), and Juju Hu(胡菊菊). Chin. Phys. B, 2020, 29(12): 120303.
[10] Quantum estimation of detection efficiency with no-knowledge quantum feedback
Dong Xie(谢东), Chunling Xu(徐春玲). Chin. Phys. B, 2018, 27(6): 060303.
[11] Quantum parameter estimation in a spin-boson dephasing quantum system by periodical projective measurements
Le Yang(杨乐), Hong-Yi Dai(戴宏毅), Ming Zhang(张明). Chin. Phys. B, 2018, 27(4): 040601.
[12] Quantum metrology with a non-Markovian qubit system
Jiang Huang(黄江), Wen-Qing Shi(师文庆), Yu-Ping Xie(谢玉萍), Guo-Bao Xu(徐国保), Hui-Xian Wu(巫慧娴). Chin. Phys. B, 2018, 27(12): 120301.
[13] Quantum coherence and non-Markovianity of an atom in a dissipative cavity under weak measurement
Yu Liu(刘禹), Hong-Mei Zou(邹红梅), Mao-Fa Fang(方卯发). Chin. Phys. B, 2018, 27(1): 010304.
[14] Phase estimation of phase shifts in two arms for an SU(1,1) interferometer with coherent and squeezed vacuum states
Qian-Kun Gong(龚乾坤), Dong Li(李栋), Chun-Hua Yuan(袁春华), Ze-Yu Qu(区泽宇), Wei-Ping Zhang(张卫平). Chin. Phys. B, 2017, 26(9): 094205.
[15] Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence
Hong-ying Yang(杨洪应), Qiang Zheng(郑强), Qi-jun Zhi(支启军). Chin. Phys. B, 2017, 26(1): 010601.
No Suggested Reading articles found!