Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 060502    DOI: 10.1088/1674-1056/20/6/060502
GENERAL Prev   Next  

Parameter estimation for chaotic systems with and without noise using differential evolution-based method

Li Nian-Qiang (李念强), Pan Wei (潘炜), Yan Lian-Shan (闫连山), Luo Bin (罗斌), Xu Ming-Feng (徐明峰), Jiang Ning (江宁)
Centre for Information Photonics and Communications, Southwest Jiaotong University, Chengdu 610031, China
Abstract  We present an approach in which the differential evolution (DE) algorithm is used to address identification problems in chaotic systems with or without delay terms. Unlike existing considerations, the scheme is able to simultaneously extract (i) the commonly considered parameters, (ii) the delay, and (iii) the initial state. The main goal is to present and verify the robustness against the common white Guassian noise of the DE-based method. Results of the time-delay logistic system, the Mackey-Glass system and the Lorenz system are also presented.
Keywords:  chaotic system      differential evolution      noise      parameter estimation  
Received:  04 December 2010      Revised:  24 January 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  74.70.De  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60976039).

Cite this article: 

Li Nian-Qiang (李念强), Pan Wei (潘炜), Yan Lian-Shan (闫连山), Luo Bin (罗斌), Xu Ming-Feng (徐明峰), Jiang Ning (江宁) Parameter estimation for chaotic systems with and without noise using differential evolution-based method 2011 Chin. Phys. B 20 060502

[1] Li X F, Pan W, Luo B and Ma D 2006 IEEE J. Quantum Electron. 42 953
[2] Zhang W L, Pan W, Luo B, Zou X H, Wang M Y and Zhou Z 2008 Opt. Lett. 33 237
[3] Rontani D, Locquet A, Sciamanna M, Citrin D S and Ortin S 2009 IEEE J. Quantum Electron. 45 879
[4] Wu J G, Xia G Q and Wu Z M 2009 Opt. Express 17 20124
[5] Parlitz U and Junge L 1996 Phys. Rev. E 54 6253
[6] Parlitz U 1996 Phys. Rev. Lett. 76 1232
[7] Rakshit B, Chowdury A R and Saha P 2007 Chaos, Solitons & Fractals 32 1278
[8] Abarbanel H D I, Creveling D R and Jeanne J M 2008 Phys. Rev. E 77 016208
[9] Quinn J C, Bryant P H, Creveling D R, Klein S R and Abarbanel D I 2009 Phys. Rev. E 80 016201
[10] Alvarez G, Montoya F, Romera M and Pastor G 2003 Phys. Lett. A 311 172
[11] Wu X G, Hu H P and Zhang B L 2004 Chaos, Solitons & Fractals 22 359
[12] Chen Z, Zeng Y C and Fu Z J 2008 Acta Phys. Sin. 57 46 (in Chinese)
[13] Piccardi C 2006 Chaos 16 043115
[14] Dai D, Ma X K, Li F C and You Y 2002 Chin. Phys. 11 2459
[15] He Q, Wang L and Liu B 2007 Chaos, Solitons & Fractals 34 654
[16] Gao F, Liu Z Q and Tong H Q 2008 Chin. Phys. B 17 1196
[17] Li L X, Yang Y, Peng H P and Wang X D 2006 Chaos, Solitons & Fractals 28 1204
[18] Chang W D 2007 Chaos, Solitons & Fractals 29 1047
[19] Peng B, Liu B, Zhang F Y and Wang L 2009 Chaos, Solitons & Fractals 39 2110
[20] Tang Y G and Guan X P 2009 Chaos, Solitons & Fractals 42 3132
[21] Price K and Storn R, Differential evolution homepage. Available from: http://www.ICSI.Berkeley.edu/ sim storn/code.html
[22] Pyragas K 1998 Phys. Rev. E 58 3067
[23] Ponomarenko V I and Prokhorov M D 2002 Phys. Rev. E 66 026215
[24] Shahverdiev E M, Nuriev R A, Hashimov R H and Shore K A 2006 Chaos, Solitons & Fractals 29 854
[25] Lorenz E N 1963 J. Atmos. Sci. 20 130
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[3] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[4] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[5] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[6] Characteristics of piecewise linear symmetric tri-stable stochastic resonance system and its application under different noises
Gang Zhang(张刚), Yu-Jie Zeng(曾玉洁), and Zhong-Jun Jiang(蒋忠均). Chin. Phys. B, 2022, 31(8): 080502.
[7] Nonvanishing optimal noise in cellular automaton model of self-propelled particles
Guang-Le Du(杜光乐) and Fang-Fu Ye(叶方富). Chin. Phys. B, 2022, 31(8): 086401.
[8] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[9] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[10] Fast prediction of aerodynamic noise induced by the flow around a cylinder based on deep neural network
Hai-Yang Meng(孟海洋), Zi-Xiang Xu(徐自翔), Jing Yang(杨京), Bin Liang(梁彬), and Jian-Chun Cheng(程建春). Chin. Phys. B, 2022, 31(6): 064305.
[11] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[12] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[13] Acoustic multipath structure in direct zone of deep water and bearing estimation of tow ship noise of towed line array
Zhi-Bin Han(韩志斌), Zhao-Hui Peng (彭朝晖), Jun Song(宋俊), Lei Meng(孟雷), Xiu-Ting Yang(杨秀庭), and Bing Su(苏冰). Chin. Phys. B, 2022, 31(5): 054301.
[14] Environmental parameter estimation with the two-level atom probes
Mengmeng Luo(罗萌萌), Wenxiao Liu(刘文晓), Yuetao Chen(陈悦涛), Shangbin Han(韩尚斌), and Shaoyan Gao(高韶燕). Chin. Phys. B, 2022, 31(5): 050304.
[15] Nano-friction phenomenon of Frenkel—Kontorova model under Gaussian colored noise
Yi-Wei Li(李毅伟), Peng-Fei Xu(许鹏飞), and Yong-Ge Yang(杨勇歌). Chin. Phys. B, 2022, 31(5): 050501.
No Suggested Reading articles found!