Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060201    DOI: 10.1088/1674-1056/27/6/060201
GENERAL Prev   Next  

Multiple Darboux-Bäcklund transformations via truncated Painlevé expansion and Lie point symmetry approach

Shuai-Jun Liu(刘帅君)1, Xiao-Yan Tang(唐晓艳)1, Sen-Yue Lou(楼森岳)1,2
1 Shanghai Key Laboratory of Trustworthy Computing, East China Normal University, Shanghai 200062, China;
2 Ningbo Collabrative Innovation Center of Nonlinear Harzard System of Ocean and Atmosphere and Faculty of Science, Ningbo University, Ningbo 315211, China
Abstract  

For a given truncated Painlevé expansion of an arbitrary nonlinear Painlevé integrable system, the residue with respect to the singularity manifold is known as a nonlocal symmetry, called the residual symmetry, which is proved to be localized to Lie point symmetries for suitable prolonged systems. Taking the Korteweg-de Vries equation as an example, the n-th binary Darboux-Bäcklund transformation is re-obtained by the Lie point symmetry approach accompanied by the localization of the n-fold residual symmetries.

Keywords:  residue symmetry      multiple Darboux-Bäcklund transformation      Lie point symmetry approach  
Received:  13 February 2018      Revised:  16 March 2018      Accepted manuscript online: 
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos.11675055,11175092,and 11205092),the Program from Shanghai Knowledge Service Platform for Trustworthy Internet of Things (Grant No.ZF1213),and K C Wong Magna Fund in Ningbo University.

Corresponding Authors:  Xiao-Yan Tang     E-mail:  xytang@sist.ecnu.edu.cn

Cite this article: 

Shuai-Jun Liu(刘帅君), Xiao-Yan Tang(唐晓艳), Sen-Yue Lou(楼森岳) Multiple Darboux-Bäcklund transformations via truncated Painlevé expansion and Lie point symmetry approach 2018 Chin. Phys. B 27 060201

[1] Korteweg D J and de Vries F 1895 Philos. Mag. 39 422
[2] Crighton D G 1995 Acta Applicandae Mathematica 39 39
[3] Kivshar Y S and Malomed B A 1989 Rev. Mod. Phys. 61 763
[4] Kivshar Y S and Luther-Davies B 1998 Phys. Rep. 298 81
[5] Rubinstein J 1970 J. Math. Phys. 11 258
[6] Skyrme T H R 1958 Proc. Roy. Soc. Lond. A 247 260
[7] Skyrme T H R 1961 Proc. Roy. Soc. Lond. A 262 237
[8] Perring J K and Skyrme T H R 1962 Nucl. Phys. 31 550
[9] Clarkson P A and Kruskal M D 1989 J. Math. Phys. 30 2201
[10] Lou S Y and Hu X B 1997 J. Math. Phys. 38 6401
[11] Gao X N, Lou S Y and Tang X Y 2013 J. High Energy Phys. 05 029
[12] Lou S Y 1994 J. Math. Phys. 35 2390
[13] Lou S Y 1993 Phys. Lett. B 302 261
[14] Lou S Y 1994 Chaos, Solitons and Fractals 4 1961
[15] Lou S Y 1996 Phys. Scr. 54 428
[16] Lou S Y 1996 Commun. Theor. Phys. 26 311
[17] Lou S Y 1993 Phys. Lett. A 175 23
[18] Cheng X P, Chen C L and Lou S Y 2014 Wave Motion 51 1298
[19] Lou S Y, Cheng X P and Tang X Y 2014 Chin. Phys. Lett. 31 070201
[20] Cheng X P, Lou S Y, Chen C L and Tang X Y 2014 Phys. Rev. E 89 043202
[21] Chen C L and Lou S Y 2014 Commun. Theor. Phys. 61 545
[22] Jin Y, Jia M and Lou S Y 2013 Chin. Phys. Lett. 30 020203
[23] Jin Y, Jia M and Lou S Y 2012 Commun. Theor. Phys. 58 795
[24] Chen C L and Lou S Y 2013 Chin. Phys. Lett. 30 110202
[25] Lou S Y and Hu X B 1993 Chin. Phys. Lett. 10 577
[26] Lou S Y 1996 Phys. Scri. 54 428
[27] Lou S Y, Hu X R and Chen Y 2012 J. Phys. A:Math. Theor. 45 155209
[28] Hu X R, Lou S Y and Chen Y 2012 Phys. Rev. E 85 056607
[29] Weiss J, Tabor M and Carnevale G 1983 J. Math. Phys. 24 522
[30] Ramani A, Grammaticos B and Bountis T 1989 Phys. Rep. 180 159
[31] Conte R 1989 Phys. Lett. A 140 383
[32] Lou S Y 1998 Z. Naturforsch A 53 51
[33] Newell A C, Tabor M and Zeng Y B 1987 Physica D 29 1
[34] Olver P J 2000 Applications of Lie Groups to Differential Equations (Graduate Texts in Mathematics) (New York Inc:Springer-Verlag)
[35] Li Y S 1992 Sci. Chin. A 35 600
[36] Boiti M, Pempinelli F and Pogrebkov A K 1991 Inverse problems 7 43
[1] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[2] Matrix integrable fifth-order mKdV equations and their soliton solutions
Wen-Xiu Ma(马文秀). Chin. Phys. B, 2023, 32(2): 020201.
[3] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[4] Reciprocal transformations of the space-time shifted nonlocal short pulse equations
Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军). Chin. Phys. B, 2022, 31(12): 120201.
[5] Rogue waves of a (3+1)-dimensional BKP equation
Yu-Qiang Yuan(袁玉强), Xiao-Yu Wu(武晓昱), and Zhong Du(杜仲). Chin. Phys. B, 2022, 31(12): 120202.
[6] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[7] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[8] Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters
Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯). Chin. Phys. B, 2022, 31(8): 080202.
[9] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[10] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[11] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[12] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[13] Residual symmetries, consistent-Riccati-expansion integrability, and interaction solutions of a new (3+1)-dimensional generalized Kadomtsev—Petviashvili equation
Jian-Wen Wu(吴剑文), Yue-Jin Cai(蔡跃进), and Ji Lin(林机). Chin. Phys. B, 2022, 31(3): 030201.
[14] Soliton molecules and asymmetric solitons of the extended Lax equation via velocity resonance
Hongcai Ma(马红彩), Yuxin Wang(王玉鑫), and Aiping Deng(邓爱平). Chin. Phys. B, 2022, 31(1): 010201.
[15] Exact solution of an integrable quantum spin chain with competing interactions
Jian Wang(王健), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2021, 30(11): 117501.
No Suggested Reading articles found!