Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 120201    DOI: 10.1088/1674-1056/ac673b
GENERAL Prev   Next  

Reciprocal transformations of the space-time shifted nonlocal short pulse equations

Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军)
Department of Mathematics, Shanghai University, Shanghai 200444, China
Abstract  Reciprocal transformations of the space-time shifted nonlocal short pulse equations are elaborated. Covariance of dependent and independent variables involved in the reciprocal transformations is investigated. Exact solutions of the space-time shifted nonlocal short pulse equations are given in terms of double Wronskians. Realness of independent variables involved in the reciprocal transformations is verified. Dynamics of some obtained solutions are illustrated.
Keywords:  reciprocal transformation      space-time shifted nonlocal short pulse equation      covariance of variable      solution  
Received:  19 March 2022      Revised:  08 April 2022      Accepted manuscript online:  14 April 2022
PACS:  02.30.Ik (Integrable systems)  
  02.30.Ks (Delay and functional equations)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875040 and 12171308).
Corresponding Authors:  Da-Jun Zhang     E-mail:  djzhang@staff.shu.edu.cn

Cite this article: 

Jing Wang(王静), Hua Wu(吴华), and Da-Jun Zhang(张大军) Reciprocal transformations of the space-time shifted nonlocal short pulse equations 2022 Chin. Phys. B 31 120201

[1] Albares P, Estévez P G and Sardón C 2020 in: Nonlinear Systems and Their Remarkable Mathematical Structures Vol. 2, eds. Euler N and Nucci M C (CRC Press, Taylor & Francis: Boca Raton) p. 1
[2] Camassa R and Holm D D 1993 Phys. Rev. Lett. 71 1661
[3] Vakhnenko V A 1992 J. Phys. A: Math. Gen. 25 4181
[4] Schäfer T and Wayne C E 2004 Physica D 196 90
[5] Baran H and Marvan M 2009 J. Phys. A: Math. Theor. 42 404007
[6] Chung Y, Jones C K R T, Schäfer T and Wayne C E 2005 Nonlinearity 18 1351
[7] Rabelo M L 1987 "Caracterizac$\tilde{\mathrm{a}}$o das Equac$\tilde{\mathrm{o}}$es Diferenciais do Tipo $u_{xt}=F(u, \partial u/\partial x, \cdots, \partial^k u/{\partial x}^k)$, Que Descrevem Superficies Pseudo-esfericas" Doctoral Thesis (University de Brasilia)
[8] Beals R, Rabelo M and Tenenblat K 1998 Stud. Appl. Math. 81 125
[9] Rabelo M L 1989 Stud. Appl. Math. 81 221
[10] Wadati M, Konno K and Ichikawa Y H 1979 J. Phys. Soc. Jpn. 47 1698
[11] Sakovich A and Sakovich S 2005 J. Phys. Soc. Jpn. 74 239
[12] Pedlosky J 1972 J. Atmos. Sci. 29 680
[13] Konno K and Oono H 1994 J. Phys. Soc. Jpn. 63 377
[14] Kuetche V K, Bouetou T B and Kofane T C 2007 J. Phys. Soc. Jpn. 76 024004
[15] Matsuno Y 2007 J. Phys. Soc. Jpn. 76 084003
[16] Pietrzyk M, Kanattsikov I and Bandelow U 2008 J. Nonl. Math. Phys. 15 162
[17] Dimakis A and Müller-Hoissen F 2010 Symmetry Integrability Geom.: Meth. Appl. (SIGMA) 6 055
[18] Matsuno Y 2011 J. Math. Phys. 52 123702
[19] Feng B F 2012 J. Phys. A: Math. Theor. 45 085202
[20] Feng B F 2015 Physica D 297 62
[21] Ablowitz M J and Musslimani Z H 2013 Phys. Rev. Lett. 110 064105
[22] Ablowitz M J and Musslimani Z H 2014 Phys. Rev. E 90 032912
[23] Ablowitz M J and Musslimani Z H 2016 Nonlinearity 29 915
[24] Fokas A S 2016 Nonlinearity 29 319
[25] Ablowitz M J and Musslimani Z H 2016 Stud. Appl. Math. 139 7
[26] Lou S Y and Huang F 2017 Sci. Rep. 7 869
[27] Gerdjikov V S and Saxena A 2017 J. Math. Phys. 58 013502
[28] Song C Q, Xiao D M and Zhu Z N 2017 J. Phys. Soc. Jpn. 86 054001
[29] Yang B and Yang J K 2018 Stud. Appl. Math. 140 178
[30] Zhou Z X 2018 Stud. Appl. Math. 141 186
[31] Ablowitz M J, Feng B F, Luo X D and Musslimani Z H 2018 Stud. Appl. Math. 141 267
[32] Chen K, Deng X, Lou S Y and Zhang D J 2018 Stud. Appl. Math. 141 113
[33] Chen K and Zhang D J 2018 Appl. Math. Lett. 75 82
[34] Deng X, Lou S Y and Zhang D J 2018 Appl. Math. Comput. 332 477
[35] Gürses M and Pekcan A 2018 J. Math. Phys. 59 051501
[36] Yang J 2018 Phys. Rev. E 98 042202
[37] Ablowitz M J and Musslimani Z H 2019 J. Phys. A: Math. Theor. 52 15
[38] Yang B and Yang J K 2019 Lett. Math. Phys. 109 945
[39] Feng W and Zhao S L 2019 Rep. Math. Phys. 84 75
[40] Lou S Y 2019 Stud. Appl. Math. 143 123
[41] Chen K, Liu S M and Zhang D J 2019 Appl. Math. Lett. 88 360
[42] Liu S M, Wu H and Zhang D J 2020 Rep. Math. Phys. 86 271
[43] Zhang D D, van der Kamp P H and Zhang D J 2020 Symmetry Integrability Geom.: Meth. Appl. (SIGMA) 16 060
[44] Lou S Y 2020 Commun. Theor. Phys. 72 057001
[45] Ablowitz M J, Luo X D and Musslimani Z H 2020 Nonlinearity 33 3653
[46] Rao J G, Cheng Y, Porsezian K, Mihalache D and He J S 2020 Physica D 401 132180
[47] Matveev V B and Smirnov A O 2020 Theor. Math. Phys. 204 1154
[48] Zhang G Q and Yan Z Y 2020 Physica D 402 132170
[49] Rybalko Y and Shepelsky D 2021 J. Diff. Equ. 270 694
[50] Rybalko Y and Shepelsky D 2021 Commun. Math. Phys. 382 87
[51] Liu S Z, Wang J and Zhang D J 2022 Stud. Appl. Math. 148 651
[52] Liu Y K and Li B 2017 Chin. Phys. Lett. 34 010202
[53] Lou S Y 2020 Acta Phys. Sin. 69 010503 (in Chinese)
[54] Song C Q and Zhu Z N 2020 Acta Phys. Sin. 69 010204 (in Chinese)
[55] Yang X Y, Zhang Z and Li B 2020 Chin. Phys. B 29 100501
[56] Ablowitz M J and Musslimani Z H 2021 Phys. Lett. A 409 127516
[57] Zhang D J, Ji J and Zhao S L 2009 Physica D 238 2361
[58] Zhao S L, Zhang D J and Ji J 2010 Chin. Phys. Lett. 27 020201
[59] Hirota R 1974 Prog. Theor. Phys. 52 1498
[60] Shi Y, Shen S F and Zhao S L 2019 Nonlinear Dyn. 95 1257
[61] Wang J, Wu H and Zhang D J 2020 Commun. Theor. Phys. 72 045002
[62] Wang J and Wu H 2022 Commun. Nonlinear Sci. Numer. Simul. 104 106052
[63] Liu S M, Wang J and Zhang D J 2022 Rep. Math. Phys. 89 199
[64] Gürses M and Pekcan A 2022 Phys. Lett. A 422 127793
[1] Positon and hybrid solutions for the (2+1)-dimensional complex modified Korteweg-de Vries equations
Feng Yuan(袁丰) and Behzad Ghanbari. Chin. Phys. B, 2023, 32(4): 040201.
[2] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[3] A probability theory for filtered ghost imaging
Zhong-Yuan Liu(刘忠源), Shao-Ying Meng(孟少英), and Xi-Hao Chen(陈希浩). Chin. Phys. B, 2023, 32(4): 044204.
[4] Lie symmetry analysis and invariant solutions for the (3+1)-dimensional Virasoro integrable model
Hengchun Hu(胡恒春) and Yaqi Li(李雅琦). Chin. Phys. B, 2023, 32(4): 040503.
[5] Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics
Ming-Jing Du(杜明婧), Bao-Jun Sun(孙宝军), and Ge Kai(凯歌). Chin. Phys. B, 2023, 32(3): 030202.
[6] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[7] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[8] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[9] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[10] Quantitative ultrasound brain imaging with multiscale deconvolutional waveform inversion
Yu-Bing Li(李玉冰), Jian Wang(王建), Chang Su(苏畅), Wei-Jun Lin(林伟军), Xiu-Ming Wang(王秀明), and Yi Luo(骆毅). Chin. Phys. B, 2023, 32(1): 014303.
[11] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[12] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[13] Solutions of novel soliton molecules and their interactions of (2 + 1)-dimensional potential Boiti-Leon-Manna-Pempinelli equation
Hong-Cai Ma(马红彩), Yi-Dan Gao(高一丹), and Ai-Ping Deng(邓爱平). Chin. Phys. B, 2022, 31(7): 070201.
[14] Nonlinear dynamical wave structures of Zoomeron equation for population models
Ahmet Bekir and Emad H M Zahran. Chin. Phys. B, 2022, 31(6): 060401.
[15] A stopping layer concept to improve the spatial resolution of gas-electron-multiplier neutron detector
Jianjin Zhou(周建晋), Jianrong Zhou(周健荣), Xiaojuan Zhou(周晓娟), Lin Zhu(朱林), Jianqing Yang(杨建清), Guian Yang(杨桂安), Yi Zhang(张毅), Baowei Ding(丁宝卫), Bitao Hu(胡碧涛), Zhijia Sun(孙志嘉), Limin Duan(段利敏), and Yuanbo Chen(陈元柏). Chin. Phys. B, 2022, 31(5): 050702.
No Suggested Reading articles found!