Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 080202    DOI: 10.1088/1674-1056/ac4f57
GENERAL Prev   Next  

Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters

Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯)
School of Mathematical Sciences, Inner Mongolia University, Hohhot 010021, China
Abstract  This paper is concerned with construction of quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters. The boson-fermion correspondence for these symmetric functions have been presented. In virtue of quantum fields, we derive a series of infinite order nonlinear integrable equations, namely, universal character hierarchy, symplectic KP hierarchy and symplectic universal character hierarchy, respectively. In addition, the solutions of these integrable systems have been discussed.
Keywords:  quantum fields      generating functions      integrable systems      symmetric functions      boson-fermion correspondence  
Received:  23 December 2021      Revised:  23 January 2022      Accepted manuscript online:  27 January 2022
PACS:  02.10.Hh (Rings and algebras)  
  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11965014 and 12061051) and the National Science Foundation of Qinghai Province, China (Grant No. 2021-ZJ-708). The authors gratefully acknowledge the support of Professor Ke Wu and Professor Weizhong Zhao at Capital Normal University, China.
Corresponding Authors:  Zhaowen Yan     E-mail:

Cite this article: 

Denghui Li(李登慧), Fei Wang(王菲), and Zhaowen Yan(颜昭雯) Quantum fields presentation and generating functions of symplectic Schur functions and symplectic universal characters 2022 Chin. Phys. B 31 080202

[1] Fulton W and Harris J 1991 Representation Theory, A First Course (New York:Springer-Verlag)
[2] Schur J 1911 J. Reine Angew. Math. 139 155
[3] Jing N H 1991 J. Algebra 138 340
[4] Macdonald I G 1995 Symmetric Functions and Hall Polynomials, 2nd edn. (Oxford:Clarendon Press)
[5] Jimbo M, Miwa T and Date E 2000 Solitons:Differential Equations, Symmetries and Infinite Dimensional Algebras (Cambridge:Cambridge University Press)
[6] Sagan B E 2001 The Symmetric Group:Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edn. (New York:Springer-Verlag)
[7] Date E, Jimbo M, Kashiwara M and Miwa T 1982 J. Phys. Soc. Jpn. 50 3813
[8] Date E, Kashiwara M, Jimbo M and Miwa T 1983 Transformation groups for soliton equations, in Nonlinear integrable systems-classical theory and quantum theory (Singapore:World Scientific Publishing)
[9] Baker T H 1996 J. Phys. A 29 3099
[10] Huang F and Wang N 2020 J. Math. Phys. 61 061508
[11] Shi L J, Wang N and Chen M R 2021 J. Nonlinear Math. Phys. 28 292
[12] Koike K 1989 Adv. Math. 74 57
[13] Tsuda T 2004 Commun. Math. Phys. 248 501
[14] Tsuda T 2012 Int. J. Math. 23 1250010
[15] Tsuda T 2005 Adv. Math. 197 587
[16] Tsuda T 2005 Commun. Math. Phys. 260 59
[17] Tsuda T 2009 Math. Ann. 345 395
[18] Wang N and Li C Z 2019 Eur. Phys. J. C 79 1
[19] Li C Z 2021 Theor. Math. Phys. 206 321
[20] Frenkel I B, Lepowsky J and Meurman A 1988 Vertex Operator Algebra and the Monster (Boston:Academic Press)
[21] Frenkel I B and Zhu Y C 1992 Duke Math. J. 66 123
[22] Kac V G 1998 Vertex Algebra for Beginners, 2nd edn. (Rhode Island:American Mathematical Society)
[23] Jarvis P D and Yung C M 1992 Lett. Math. Phys. 26 115
[24] Jing N H and Nie B Z 2015 Ann. Comb. 19 427
[25] Fauser B, Jarvis P D and King R C 2016 J. Phys. A:Math. Theor. 49 425201
[26] Necoechea G and Rozhkovskaya N 2020 J. Math. Sci. 247 926
[27] Li C Z 2021 Int. J. Math. 32 2150045
[28] Frenkel I B 1982 J. Funct. Anal. 44 259
[29] Kac V G, Raina A K and Rozhkovskaya N 2013 Bombay Lectures on Highest Weight Representations of Infinite Dimensional Lie Algebras, 2nd edn. (Singapore:World Scientific Publishing)
[30] Kac V G, Rozhkovskaya N and van de Leur J 2021 J. Math. Phys. 62 021702
[1] Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力). Chin. Phys. B, 2023, 32(1): 017501.
[2] Deformed oscillator algebra for quantum superintegrable systems in two-dimensional Euclidean space and on the complex two-sphere
H. Panahi, Z. Alizadeh. Chin. Phys. B, 2013, 22(6): 060304.
[3] Higher-order squeezing of quantum field and higher-order uncertainty relations in non-degenerate four-wave mixing
Li Xi-Zeng (李希曾), Su Bao-Xia (苏保霞), Chai Lu (柴路). Chin. Phys. B, 2005, 14(9): 1828-1833.
[4] Higher-order squeezing of quantum electromagnetic fields and higher-order uncertainty relations in two-mode squeezed states
Li Xi-Zeng (李希曾), Su Bao-Xia (苏保霞), Chai Lu (柴路). Chin. Phys. B, 2004, 13(12): 2058-2063.
No Suggested Reading articles found!