|
|
Enhancement of water self-diffusion at super-hydrophilic surface with ordered water |
Xiao-Meng Yu(于晓萌)1,2, Chong-Hai Qi(齐崇海)3, Chun-Lei Wang(王春雷)1 |
1 Division of Interfacial Water and Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China;
2 School of Physical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China;
3 School of Physics, Shandong University, Jinan 250100, China |
|
|
Abstract It has been well acknowledged that molecular water structures at the interface play an important role in the surface properties, such as wetting behavior or surface frictions. Using molecular dynamics simulation, we show that the water self-diffusion on the top of the first ordered water layer can be enhanced near a super-hydrophilic solid surface. This is attributed to the fewer number of hydrogen bonds between the first ordered water layer and water molecules above this layer, where the ordered water structures induce much slower relaxation behavior of water dipole and longer lifetime of hydrogen bonds formed within the first layer.
|
Received: 26 October 2017
Revised: 07 February 2018
Accepted manuscript online:
|
PACS:
|
01.30.-y
|
(Physics literature and publications)
|
|
05.20.-y
|
(Classical statistical mechanics)
|
|
05.70.Np
|
(Interface and surface thermodynamics)
|
|
05.90.+m
|
(Other topics in statistical physics, thermodynamics, and nonlinear dynamical systems)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11290164,11674345,and U1532260),the Key Research Program of Chinese Academy of Sciences (Grant Nos.KJZD-EW-M03 and QYZDJ-SSW-SLH019),the Youth Innovation Promotion Association,Chinese Academy of Sciences,the Shanghai Supercomputer Center of China,the Computer Network Information Center of Chinese Academy of Sciences,and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase),China. |
Corresponding Authors:
Chun-Lei Wang
E-mail: wangchunlei@sinap.ac.cn
|
Cite this article:
Xiao-Meng Yu(于晓萌), Chong-Hai Qi(齐崇海), Chun-Lei Wang(王春雷) Enhancement of water self-diffusion at super-hydrophilic surface with ordered water 2018 Chin. Phys. B 27 060101
|
[1] |
He Y, Tilocca A, Dulub O, Selloni A and Diebold U 2009 Nat. Mater. 8 585
|
[2] |
Ahadi E and Konermann L 2011 J. Am. Chem. Soc. 133 9354
|
[3] |
Liu K, Wang C L, Ma J, Shi G S, Yao X, Fang H P, Song Y L and Wang J J 2016 Proc. Natl. Acad. Sci. USA 113 14739
|
[4] |
Xu K, Cao P G and Heath J R 2010 Science 329 1188
|
[5] |
Neek-Amal M, Peeters F M, Grigorieva I V and Geim A K 2016 Acs Nano 10 3685
|
[6] |
Algara-Siller G, Lehtinen O, Wang F C, Nair R R, Kaiser U, Wu H A, Geim A K and Grigorieva I V 2015 Nature 519 443
|
[7] |
Cheh J, Gao Y, Wang C, Zhao H and Fang H 2013 J. Stat. Mech.:Theor. Exp. 2013 P06009
|
[8] |
Guo J, Meng X, Chen J, Peng J, Sheng J, Li X Z, Xu L, Shi J R, Wang E and Jiang Y 2014 Nat. Mater. 13 184
|
[9] |
Guo P, Tu Y S, Yang J R, Wang C L, Sheng N and Fang H P 2015 Phys. Rev. Lett. 115 186101
|
[10] |
Nutt D R and Smith J C 2008 J. Am. Chem. Soc. 130 13066
|
[11] |
Kasson P M, Lindahl E and Pande V S 2011 J. Am. Chem. Soc. 133 3812
|
[12] |
Björneholm O, Hansen M H, Hodgson A, Liu L M, Limmer D T, Michaelides A Pedevilla P, Rossmeisl J, Shen H and Tocci G 2016 Chem. Rev. 116 7698
|
[13] |
Willard A P, Limmer D T, Madden P A and Chandler D 2013 J. Chem. Phys. 138 184702
|
[14] |
Limmer D T, Willard A P, Madden P and Chandler D 2013 Proc. Natl. Acad. Sci. USA 110 4200
|
[15] |
Wang C L, Zhou B, Tu Y S, Duan M Y, Xiu P, Li J Y and Fang H P 2012 Sci. Rep. 2 358
|
[16] |
Wang C L, Lu H J, Wang Z G, Xiu P, Zhou B, Zuo G H, Wan R Z, Hu J and Fang H P 2009 Phys. Rev. Lett. 103 137801
|
[17] |
Xu Z, Gao Y, Wang C L and Fang H P 2015 J. Phys. Chem. C 119 20409
|
[18] |
Velasco-Velez J J, Wu C H, Pascal T A, Wan L F, Guo J, Prendergast D and Salmeron M 2014 Science 346 831
|
[19] |
Ball P 2013 Nat. Mater. 12 289
|
[20] |
Rotenberg B, Patel A J and Chandler D 2011 J. Am. Chem. Soc. 133 20521
|
[21] |
Shao S, Zhao L, Guo P and Wang C 2014 Nucl. Sci. Techniq. 25 20502
|
[22] |
Nie X C, Zhou B, Wang C L and Fang H P 2018 Nucl. Sci. Techniq. 29 18
|
[23] |
Wang C L, Wen B H, Tu Y S, Wan R Z and Fang H P 2015 J. Phys. Chem. C 119 11679
|
[24] |
Ho T A, Papavassiliou D V, Lee L L and Striolo A 2011 Proc. Natl. Acad. Sci. USA 108 16170
|
[25] |
Wang C L, Yang Y Z and Fang H P 2014 Sci. China-Phys. Mech. Astron. 57 802
|
[26] |
Wang C L, Zhou B, Xiu P and Fang H P 2011 J. Phys. Chem. C 115 3018
|
[27] |
Ren X P, Zhou B, Li L T and Wang C L 2013 Chin. Phys. B 22 016801
|
[28] |
Lutzenkirchen J, Zimmermann R, Preocanin T, Filby A, Kupcik T, Kuttner D Abdelmonem A, Schild D, Rabung T, Plaschke M, Brandenstein F, Werner C and Geckeis H 2010 Adv. Colloid Interface Sci. 157 61
|
[29] |
Lee K, Kim Q, An S, An J, Kim J, Kim B and Jhe W 2014 Proc. Natl. Acad. Sci. USA 111 5784
|
[30] |
Phan A, Ho T A, Cole D R and Striolo A 2012 J. Phys. Chem. C 116 15962
|
[31] |
Leng Y and Cummings P T 2005 Phys. Rev. Lett. 94 026101
|
[32] |
Cheng S, Luan B and Robbins M O 2010 Phys. Rev. E 81 016102
|
[33] |
Drelich J, Chibowski E, Meng D D and Terpilowski K 2011 Soft Matter 7 9804
|
[34] |
Giovambattista N, Debenedetti P G and Rossky P J 2007 J. Phys. Chem. B 111 9581
|
[35] |
Von H Y, Gekle S and Netz R R 2013 Phys. Rev. Lett. 111 118103
|
[36] |
Herves P, Perez-Lorenzo M, Liz-Marzan L M, Dzubiella J, Lu Y and Ballauff M 2012 Chem. Soc. Rev. 41 5577
|
[37] |
Farokhzad O C and Langer R 2009 ACS Nano 3 16
|
[38] |
Pal S K and Zewail A H 2004 Chem. Rev. 104 2099
|
[39] |
Huang D M, Sendner C, Horinek D, Netz R R and Bocquet L 2008 Phys. Rev. Lett. 101 226101
|
[40] |
Li J Y, Liu T, Li X, Ye L, Chen H J, Fang H P, Wu Z H and Zhou R H 2005 J. Phys. Chem. B 109 13639
|
[41] |
Bocquet L and Charlaix E 2010 Chem. Soc. Rev. 39 1073
|
[42] |
Schoch R B, Han J and Renaud P 2008 Rev. Mod. Phys. 80 839
|
[43] |
Holt J K, Park H G, Wang, Y, Stadermann M, Artyukhin A B, Grigoropoulos C P, Noy A and Bakajin O 2006 Science 312 1034
|
[44] |
Ehlinger Q, Joly L and Pierre-Louis O 2013 Phys. Rev. Lett. 110 104504
|
[45] |
Ngai K L 2017 Chin. Phys. B 26 018105
|
[46] |
Yu W F, Lin Z Z and Ning X J 2013 Chin. Phys. B 22 116802
|
[47] |
Ahmed Asad and Wu J T 2011 Chin. Phys. B 20 106601
|
[48] |
Tang F L, Chen G B, Xie Y and Lu W J 2011 Acta Phys. Sin. 60 066801 (in Chinese)
|
[49] |
Hess B, Kutzner C, Van D S D and Lindahl E 2008 J. Chem. Theor. Comput. 4 435
|
[50] |
Berendsen H J C, Grigera J R and Straatsma T P 1987 J. Phys. Chem. 91 6269
|
[51] |
Darden T, York D and Pedersen L 1993 J. Chem. Phys. 98 10089
|
[52] |
Hu J, Xiao X D, Ogletree D F and Salmeron M 1995 Science 268 267
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|