Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060202    DOI: 10.1088/1674-1056/27/6/060202
GENERAL Prev   Next  

Distance-based formation tracking control of multi-agent systems with double-integrator dynamics

Zixing Wu(吴梓杏), Jinsheng Sun(孙金生), Ximing Wang(王希铭)
School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  This paper addresses the distance-based formation tracking problem for a double-integrator modeled multi-agent system (MAS) in the presence of a moving leader in d-dimensional space. Under the assumption that the state of leader can be obtained over fixed graphs, a distributed distance-based control protocol is designed for each double-integrator follower agent. The protocol consists of three terms:a gradient function term, a velocity consensus term, and a leader tracking term. Different shape stabilizing functions proposed in the literature can be applied to the gradient function term. The proposed controller allows all agents to both achieve the desired shape and reach the same velocity with moving leader by controlling the distances and velocity. Finally, we analyze the local asymptotic stability of the equilibrium set with center manifold theory. We validate the effectiveness of our approach through two examples.
Keywords:  multi-agent system      formation control      distributed control  
Received:  26 December 2017      Revised:  25 March 2018      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
  02.30.Em (Potential theory)  
  05.65.+b (Self-organized systems)  
  02.10.Ox (Combinatorics; graph theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No.61603188).
Corresponding Authors:  Jinsheng Sun     E-mail:  jssun67@163.com

Cite this article: 

Zixing Wu(吴梓杏), Jinsheng Sun(孙金生), Ximing Wang(王希铭) Distance-based formation tracking control of multi-agent systems with double-integrator dynamics 2018 Chin. Phys. B 27 060202

[1] Ren W 2007 IET Control Theory Appl. 1 505
[2] Ma G F, Sun Y C and Chen L M 2017 Chin. Phys. B 26 068703
[3] Oh K K, Park M and, Ahn H S 2015 Automatica 53 424
[4] Krick L, Broucke M E and Francis B A 2009 Int. J. Control 82 423
[5] Dorfler F and Francis B 2009 Proceedings of IEEE European Control Conference (ECC), "2009 European", pp. 2432-2437
[6] Oh K K and Ahn H S 2014 Int. J. Robust Nonlinear Control 24 1809
[7] Sun Z, Mou S, Anderson B D O and Cao M 2016 Systems and Control Letters 93 50
[8] Lu B, Chen F and Lan W Y 2015 Chin. Phys. B 24 090206
[9] Olfati-Saber R and Murray R M 2002 IFAC World Congress 1 242
[10] Deghat M, Anderson B and Lin Z 2016 IEEE Trans. Automatic Control 61 1824
[11] Sun Z, Anderson B D, Deghat M and Ahn H S 2017 Int. J. Control 90 1403
[12] Olfati-Saber R 2006 IEEE Trans. Automatic Control 51 401
[13] Oh K K and Ahn H S 2011 Automatica 47 2306
[14] Dimarogonas D V and Johansson K H 2008 Proceedings of 47 th IEEE Conference on Decision and Control CDC pp. 1200-1205
[15] Dimarogonas D V, Johansson K H 2010 Automatica 46 695
[16] Anderson B D O, Helmke U 2014 SIAM Journal on Control and Optimization 52 219
[17] Dorfler F and Francis B 2010 IEEE Trans. Automatic Control 55 2379
[18] de Marina H G, Jayawardhana B and Cao M 2017 arXiv preprint arXiv:1703.07960
[19] Rozenheck O, Zhao S, Zelazo D 2015 Proceedings of Control Conference pp. 1693-1698
[20] Sun Z, Mou S, Deghat M and Anderson B D O 2016 Int. J. Robust & Nonlinear Control 26 2824
[21] Cai X and de Queiroz M 2015 Proceedings of ASME 2014 Dynamic Systems and Control Conference:American Society of Mechanical Engineers V001T14A003-V001T14A003
[22] Marina H G D, Jayawardhana B and Cao M 2016 arXiv preprint arXiv:1604.02943
[23] Dong L J, Chai S C, Zhang B H and Nguang S K 2014 Chin. Phys. B 23 060502
[24] Zhang X, Wang J H, Yang D D and Xu Y 2017 Chin. Phys. B 26 070501
[25] Hendrickson B 1992 SIAM Journal on Computing 21 65
[26] Asimow L and Roth B 1979 J. Math. Anal. Appl. 68 171
[27] Sastry S S 1999 Springer Science and Business Media 10
[28] Carr J 1991 Springer Science and Business Media 35
[29] Oh K K and Ahn H S 2017 Int. J. Control, Automation and Systems 15 1738
[1] Memory-augmented adaptive flocking control for multi-agent systems subject to uncertain external disturbances
Ximing Wang(王希铭), Jinsheng Sun(孙金生), Zhitao Li(李志韬), and Zixing Wu(吴梓杏). Chin. Phys. B, 2022, 31(2): 020203.
[2] Fault-tolerant finite-time dynamical consensus of double-integrator multi-agent systems with partial agents subject to synchronous self-sensing function failure
Zhi-Hai Wu(吴治海) and Lin-Bo Xie(谢林柏). Chin. Phys. B, 2022, 31(12): 128902.
[3] Consensus problems on networks with free protocol
Xiaodong Liu(柳晓东) and Lipo Mo(莫立坡). Chin. Phys. B, 2021, 30(7): 070701.
[4] Hybrid-triggered consensus for multi-agent systems with time-delays, uncertain switching topologies, and stochastic cyber-attacks
Xia Chen(陈侠), Li-Yuan Yin(尹立远), Yong-Tai Liu(刘永泰), Hao Liu(刘皓). Chin. Phys. B, 2019, 28(9): 090701.
[5] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[6] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[7] H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies
Muyun Fang(方木云), Cancan Zhou(周灿灿), Xin Huang(黄鑫), Xiao Li(李晓), Jianping Zhou(周建平). Chin. Phys. B, 2019, 28(1): 010703.
[8] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[9] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[10] Generation of optimal persistent formations for heterogeneous multi-agent systems with a leader constraint
Guo-Qiang Wang(王国强), He Luo(罗贺), Xiao-Xuan Hu(胡笑旋). Chin. Phys. B, 2018, 27(2): 028901.
[11] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[12] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[13] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[14] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[15] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
No Suggested Reading articles found!