Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 020201    DOI: 10.1088/1674-1056/ac7dc1
GENERAL   Next  

Matrix integrable fifth-order mKdV equations and their soliton solutions

Wen-Xiu Ma(马文秀)1,2,3,4,†
1 Department of Mathematics, Zhejiang Normal University, Jinhua 321004, China;
2 Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
3 Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA;
4 School of Mathematical and Statistical Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa
Abstract  We consider matrix integrable fifth-order mKdV equations via a kind of group reductions of the Ablowitz-Kaup-Newell-Segur matrix spectral problems. Based on properties of eigenvalue and adjoint eigenvalue problems, we solve the corresponding Riemann-Hilbert problems, where eigenvalues could equal adjoint eigenvalues, and construct their soliton solutions, when there are zero reflection coefficients. Illustrative examples of scalar and two-component integrable fifth-order mKdV equations are given.
Keywords:  matrix integrable equation      Riemann-Hilbert problem      soliton  
Received:  23 May 2022      Revised:  10 June 2022      Accepted manuscript online:  02 July 2022
PACS:  02.30.Ik (Integrable systems)  
  05.45.Yv (Solitons)  
Fund: The work was supported in part by the National Natural Science Foundation of China (Grant Nos. 11975145, 11972291, and 51771083), the Ministry of Science and Technology of China (Grant No. G2021016032L), and the Natural Science Foundation for Colleges and Universities in Jiangsu Province, China (Grant No. 17 KJB 110020).
Corresponding Authors:  Wen-Xiu Ma     E-mail:

Cite this article: 

Wen-Xiu Ma(马文秀) Matrix integrable fifth-order mKdV equations and their soliton solutions 2023 Chin. Phys. B 32 020201

[1] Das A 1989 Integrable Models (Singapore: World Scientific)
[2] Ma W X 2019 Nonlinear Anal. RWA 47 1
[3] Ma W X 2021 Partial Differ. Equ. Appl. Math. 4 100190
[4] Ablowitz M J and Musslimani Z H 2017 Stud. Appl. Math. 139 7
[5] Ma W X 2020 Appl. Math. Lett. 102 106161
[6] Ma W X, Huang Y H and Wang F D 2020 Stud. Appl. Math. 145 563
[7] Ma W X 2022 Mod. Phys. Lett. B 36 2250094
[8] Novikov S P, Manakov S V, Pitaevskii L P and Zakharov V E 1984 Theory of Solitons: the Inverse Scattering Method (New York: Consultants Bureau)
[9] Yang J 2010 Nonlinear Waves in Integrable and Nonintegrable Systems (Philadelphia: SIAM)
[10] Wang D S, Zhang D J and Yang J 2010 J. Math. Phys. 51 023510
[11] Xiao Y and Fan E G 2016 Chin. Ann. Math. Ser. B 37 373
[12] Geng X G and Wu J P 2016 Wave Motion 60 62
[13] Yang J 2019 Phys. Lett. A 383 328
[14] Ma W X 2021 Proc. Am. Math. Soc. 149 251
[15] Ma W X 2022 Acta Math. Sci. 42 127
[16] Whitham G B 1974 Linear and Nonlinear Waves (New York: John Wiley)
[17] Hasegawa A 1989 Optical Solitons in Fibers (Berlin: Springer)
[18] Ma W X 2022 Physica D 430 133078
[19] Ma W X 2019 Math. Meth. Appl. Sci. 42 1099
[20] Ma W X 2021 Symmetry 13 2205
[21] Ma W X 2022 Proc. Amer. Math. Soc. Ser. B 9 1
[22] Wazwaz A M 2021 Waves Random Complex Media 31 867
[23] Xin X P, Liu Y T, Xia Y R and Liu H Z 2021 Appl. Math. Lett. 119 107209
[24] Ablowitz M J and Musslimani Z H 2021 Phys. Lett. A 409 127516
[25] Ma W X and Zhou Y 2018 J. Differ. Equations 264 2633
[26] Sulaiman T A, Yusuf A, Abdeljabbar A and Alquran M 2021 J. Geom. Phys. 169 104347
[27] Chen S J, Lü X, Li M G and Wang F 2021 Phys. Scr. 96 095201
[28] He X J and Lü X 2022 Math. Comput. Simul. 197 327
[29] Chen S J and Lü X 2022 Commun. Nonlinear Sci. Numer. Simul. 109 106103
[30] Xu Z X and Chow K W 2016 Appl. Math. Lett. 56 72
[31] Rao J G, Zhang, Y S, Fokas A S and He J S 2018 Nonlinearity 31 4090
[32] Ma W X 2019 Mathematics 7 573
[33] Gesztesy F and Holden H 2003 Soliton Equations and Their Algebro-geometric Solutions: (1+1)-Dimensional Continuous Models (Cambridge: Cambridge University Press)
[34] Batwa S and Ma W X 2018 Adv. Math. Phys. 2018 2062398
[35] Liu N, Chen M J, Guo B L 2021 Stud. Appl. Math. 147 230
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[3] Soliton molecules, T-breather molecules and some interaction solutions in the (2+1)-dimensional generalized KDKK equation
Yiyuan Zhang(张艺源), Ziqi Liu(刘子琪), Jiaxin Qi(齐家馨), and Hongli An(安红利). Chin. Phys. B, 2023, 32(3): 030505.
[4] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[5] Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
Xu-De Wang(汪徐德), Xu Geng(耿旭), Jie-Yu Pan(潘婕妤), Meng-Qiu Sun(孙梦秋), Meng-Xiang Lu(陆梦想), Kai-Xin Li(李凯芯), and Su-Wen Li(李素文). Chin. Phys. B, 2023, 32(2): 024210.
[6] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[7] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[8] Oscillation properties of matter-wave bright solitons in harmonic potentials
Shu-Wen Guan(关淑文), Ling-Zheng Meng(孟令正), and Li-Chen Zhao(赵立臣). Chin. Phys. B, 2022, 31(8): 080506.
[9] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[10] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[11] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[12] Manipulating vector solitons with super-sech pulse shapes
Yan Zhou(周延), Keyun Zhang(张克赟), Chun Luo(罗纯), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2022, 31(5): 054203.
[13] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[14] A nonlocal Boussinesq equation: Multiple-soliton solutions and symmetry analysis
Xi-zhong Liu(刘希忠) and Jun Yu(俞军). Chin. Phys. B, 2022, 31(5): 050201.
[15] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
No Suggested Reading articles found!