Soliton molecules and asymmetric solitons of the extended Lax equation via velocity resonance
Hongcai Ma(马红彩)1,2,†, Yuxin Wang(王玉鑫)1,‡, and Aiping Deng(邓爱平)1,2
1 Department of Applied Mathematics, Donghua University, Shanghai 201620, China; 2 Institute for Nonlinear Sciences, Donghua University, Shanghai 201620, China
Abstract We investigate the techniques for velocity resonance and apply them to construct soliton molecules using two solitons of the extended Lax equation. What is more, each soliton molecule can be transformed into an asymmetric soliton by changing the parameter φ. In addition, the collision between soliton molecules (or asymmetric soliton) and several soliton solutions is observed. Finally, some related pictures are presented.
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11371086, 11671258, and 11975145), the Fund of Science and Technology Commission of Shanghai Municipality, China (Grant No. 13ZR1400100), the Fund of Institute for Nonlinear Sciences, Donghua University, and the Fundamental Research Funds for the Central Universities, China (Grant No. 2232021G-13).
Corresponding Authors:
Hongcai Ma, Yuxin Wang
E-mail: hongcaima@hotmail.com;wangyuxin0130@163.com
Cite this article:
Hongcai Ma(马红彩), Yuxin Wang(王玉鑫), and Aiping Deng(邓爱平) Soliton molecules and asymmetric solitons of the extended Lax equation via velocity resonance 2022 Chin. Phys. B 31 010201
[1] Akhmediev N and Ankiewicz A 2000 Chaos10 600 [2] Stratmann M, Pagel T and Mitschke F 2005 Phys. Rev. Lett.95 143902 [3] Herink G, Kurtz F, Jalali B, Solli D R and Ropers C 2017 Science356 50 [4] Liu X M, Yao X K and Cui Y D 2018 Phys. Rev. Lett.121 23905 [5] Kazimierz L, Rejish N and Luis S 2012 Phys. Rev. A86 013610 [6] Katarzyna K, Nithyanandan K, Ugo A, Patrice T and Philippe G 2017 Phys. Rev. Lett.118 243901 [7] Dudley M J, Dias F, Erkintalo M and Genty G 2014 Nat. Photon.8 755 [8] Zabusky N J and Kruskal M D 1965 Phys. Rev. Lett.15 240 [9] Kivshar Y S, Malomed B A and Shirshov P P 1989 Phys. Rev. Lett.61 763 [10] Thomas H and Horowitz G T 2005 Phys. Rev. Lett.94 221301 [11] Rohrmann P, Hause A and Mitschke F 2013 Phys. Rev. A87 043834 [12] Lou S Y 2020 J. Phys. Commun.4 041002 [13] Xu D H and Lou S Y 2020 Acta Phys. Sin.69 014208 (in Chinese) [14] Zhang Z, Yang S X and Li B 2019 Chin. Phys. Lett.36 120501 [15] Yan Z W and Lou S Y 2020 Appl. Math. Lett.104 106271 [16] Yang X Y, Fan R and Li B 2020 Phys. Scr.95 045213 [17] Yang X Y, Zhang Z and Li B 2020 Chin. Phys. B.29 100501 [18] Dong J J, Li B and Yuen M 2020 Commun. Theor. Phys.72 025002 [19] Ma H C, Cheng Q X and Deng A P 2020 Commun. Theor. Phys.72 095001 [20] Ma H C, Cheng Q X and Deng A P 2021 Mod. Phys. Lett. B35 2150174 [21] Ma W X 2021 Int. J. Nonlinear Sci. Numer. Simul.22 000010151520200214 [22] Ma W X 2021 Opt. Quantum Electron.52 511 [23] Ma W X 2021 J. Geometry Phys.165 104191 [24] Wazwaz A M 2016 J. Ocean Eng. Sci.1 181 [25] Marchant T R and Smyth N F 1990 J. Fluid Mech.221 263 [26] Marchant T R and Smyth N F 1996 IMA J. Appl. Math.56 157 [27] Dullin H R, Gottwald G A and Holm D D 2003 Fluid Dyn. Res.33 73 [28] Dullin H R, Gottwald G A and Holm D D 2004 Physica D190 1 [29] Wang L, Zhu Y J, Wang Z Z, Qi F H and Guo R 2016 Commun. Nonlinear Sci. Numer. Simul.33 218
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.