CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Theoretical study on the lasing plasmon of a split ring for label-free detection of single molecules and single nanoparticles |
Chunjie Zheng(郑春杰), Tianqing Jia(贾天卿), Hua Zhao(赵华), Yingjie Xia(夏英杰), Shian Zhang(张诗按), Zhenrong Sun(孙真荣) |
State Key Laboratory of Precision Spectroscopy, College of Physics and Materials, East China Normal University, Shanghai 200062, China |
|
|
Abstract This paper reports the plasmonic lasing of a split ring filled with gain material in water. The lasing mode (1500 nm) is far from the pump mode (980 nm), which can depress the detection noise from the pump light. The laser intensities of the two modes simultaneously increase by more than 103 in amplitude, which can intensify the absorption efficiency of the pumping light and enhance the plasmonic lasing. The plasmonic lasing is a sensitive sensor. When a single protein nanoparticle (n=1.5, r=1.25 nm) is trapped in the gap of the split ring, the lasing spectrum moves by 0.031 nm, which is much larger than the detection limit of 10-5 nm. Moreover, the lasing intensity is also very sensitive to the trapped nanoparticle. It reduces to less than 1/600 when a protein nanoparticle (n=1.5, r=1.25 nm) is trapped in the gap.
|
Received: 27 November 2017
Revised: 01 March 2018
Accepted manuscript online:
|
PACS:
|
78.45.+h
|
(Stimulated emission)
|
|
87.85.fk
|
(Biosensors)
|
|
52.25.Os
|
(Emission, absorption, and scattering of electromagnetic radiation ?)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11474097,11374099,and 11274116) and the Open Fund of the State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics),China. |
Corresponding Authors:
Tianqing Jia
E-mail: tqjia@phy.ecnu.edu.cn
|
Cite this article:
Chunjie Zheng(郑春杰), Tianqing Jia(贾天卿), Hua Zhao(赵华), Yingjie Xia(夏英杰), Shian Zhang(张诗按), Zhenrong Sun(孙真荣) Theoretical study on the lasing plasmon of a split ring for label-free detection of single molecules and single nanoparticles 2018 Chin. Phys. B 27 057802
|
[1] |
Nie S M and Emory S R 1997 Science 275 1102
|
[2] |
He L N, Özdemir S K, Zhu J G, Kim W and Yang L 2011 Nat. Nanotechnol. 6 428
|
[3] |
Pang Y J and Gordon R 2012 Nano Lett. 12 402
|
[4] |
Dantham V R, Holler S Barbre C, Keng D, Kolchenko V and Arnold S 2013 Nano Lett. 13 3347
|
[5] |
Baaske M D, Foreman M R and Vollmer F 2014 Nat. Nanotechnol. 9 933
|
[6] |
Ament I, Prasad J, Henkel A, Schmachtel S and Sönnichsen C 2012 Nano Lett. 12 1092
|
[7] |
Liu S D, Yang Z, Liu R P and Li X Y 2012 ACS Nano 6 6260
|
[8] |
Cubukcu E, Zhang S, Park Y S, Bartal G and Zhang X 2009 Appl. Phys. Lett. 95 043113
|
[9] |
Yue W S, Yang Y, Wang Z H, Chen L Q and Wang X B 2013 J. Phys. Chem. C 117 21908
|
[10] |
Liu S D, Yang Z, Liu R P and Li X Y 2011 J. Phys. Chem. C 115 24469
|
[11] |
Cao C, Zhang J, Wen X L, Dodson S L, Dao N T, Wong L M, Wang S J, Li S Z, Phan A T and Xiong Q H 2013 ACS Nano 7 7583
|
[12] |
Wang J Q, Fan C Z, He J N, Ding P, Liang E J and Xue Q Z 2013 Opt. Express 21 2236
|
[13] |
Caballero B, García-Martín A and Cuevas J C 2016 ACS Photonics 3 203
|
[14] |
Fu Y H, Zhang J B, Yu Y F and Luk'yanchuk B 2012 ACS Nano 6 5130
|
[15] |
Zhang K L, Hou Z L, Bi S and Fang H M 2017 Chin. Phys. B 26 127802
|
[16] |
Xu X L, Peng B, Li D H, Zhang J, Wong L M, Zhang Q, Wang S J and Xiong Q H 2011 Nano Lett. 11 3232
|
[17] |
Antosiewicz T J, Apell S P and Shegai T 2014 ACS Photonics 1 454
|
[18] |
Chen S, Meng L Y, Shan H Y, Li J F, Qian L H, Williams C T, Yang Z L and Tian Z Q 2016 ACS Nano 10 581
|
[19] |
Liu S D, Qi X, Zhai W C, Chen Z H, Wang W J and Han J B 2015 Nanoscale 7 20171
|
[20] |
Zhang W H and Martin O J F 2015 ACS Photonics 2 144
|
[21] |
Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
|
[22] |
Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
|
[23] |
Noginov M A, et al. 2009 Nature 460 1110
|
[24] |
Hill M T, et al. 2009 Opt. Express 17 11107
|
[25] |
Huo Y Y, Jia T Q, Zhang Y, Zhao H Zhang S A, Feng D H and Sun Z R 2014 Appl. Phys. Lett. 104 113104
|
[26] |
Akselrod G M, Argyropoulos C, Hoang T B, CiracíC, Fang C, Huang J N, Smith D R and Mikkelsen M H 2014 Nat. Photon. 8 835
|
[27] |
Lu Y J 2014 Nano Lett. 14 4381
|
[28] |
Wu D J, Wu X W, Cheng Y, Jin B B and Liu X J 2015 Appl. Phys. Lett. 107 191909
|
[29] |
Ma R M, Ota S, Li Y M, Yang S and Zhang X 2014 Nat. Nanotechnol. 9 600
|
[30] |
Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
|
[31] |
Liu S Y, Li J F, Zhou F, Gan L and Li Z Y 2011 Opt. Lett. 36 1296
|
[32] |
Molina P, Yrola E, Ramírez M O, Tserkezis C, Plaza J L, Aizpurua J, Bravo-Abad J and Bausá L E 2016 Nano Lett. 16 895
|
[33] |
Shang X Y, Chen P, Jia T Q, Feng D H, Zhang S A, Sun Z R and Qiu J R 2015 Phys. Chem. Chem. Phys. 17 11481
|
[34] |
Shang X Y, Chen P, Cheng W J, Zhou K, Ma J, Feng D H, Zhang S A, Sun Z R, Qiu J R and Jia T Q 2014 J. Appl. Phys. 116 063101
|
[35] |
Zhu Z H, Liu H, Wang S M, Ye W M, Yuan X D and Zhu S N 2010 Opt. Lett. 35 754
|
[36] |
Stockman M I 2010 J. Opt. 12 024004
|
[37] |
Raschke G, Kowarik S, Franzl T, Sönnichsen C, Klar T A and Feldmann J 2003 Nano Lett. 3 935
|
[38] |
Stan R C, Kros A, Appel J and Sanghamitra N J M 2016 J. Phys. Chem. C 120 7639
|
[39] |
Zijlstra P, Paulo P M R and Orrit M 2012 Nat. Nanotechnol. 7 379
|
[40] |
Wu C, Khanikaev A B, Adato R, Arju N, Yanik A A, Altug H and Shvets G 2012 Nat. Mater. 11 69
|
[41] |
Yang J J, Giessen H and Lalanne P 2015 Nano Lett. 15 3439
|
[42] |
Ahn W, Boriskina S V, Hong Y and Reinhard B M 2012 ACS Nano 6 951
|
[43] |
Zhang Y, Jia T Q, Zhang H M and Xu Z Z 2012 Opt. Lett. 37 4919
|
[44] |
Zhang S, Genov D A, Wang Y, Liu M and Zhang X 2008 Phys. Rev. Lett. 101 047401
|
[45] |
Zhong H, Zhou J, Gu C, Wang M, Fang Y, Xu T and Zhou J 2017 Chin. Phys. B 26 127301
|
[46] |
Arnold S, Khoshsima M, Teraoka I, Holler S and Vollmer F 2003 Opt. Lett. 28 272
|
[47] |
Johnson S G, Ibanescu M, Skorobogatiy M A, Weisberg O, Joannopoulos J D and Fink Y 2002 Phys. Rev. E 65 066611
|
[48] |
Duan H G, Fernández-Domínguez A I, Bosman M, Maier S A and Yang J K W 2012 Nano Lett. 12 1683
|
[49] |
Ahmed A and Gordon R 2012 Nano Lett. 12 2625
|
[50] |
Neubrech F, Weber D, Katzmann J, Huck C, Toma A, Fabrizio E D, Pucci A and Härtling T 2012 ACS Nano 6 7326
|
[51] |
Chen B Q, Zhang C, Li J F, Li Z Y and Xia Y N 2016 Nanoscale 8 15730
|
[52] |
Galanzha E I, Weingold R, Nedosekin D A, Sarimollaoglu M, Nolan J, Harrington W, Kuchyanov A S, Parkhomenko R G, Watanabe F, Nima Z, Biris A S, Plekhanov A I, Stockman M I and Zharov V 2017 Nat. Commun. 8 15528
|
[53] |
Yang A K, Li Z Y, Knudson M P, Hryn A J, Wang W J, Aydin K and Odom T W 2015 ACS Nano 9 11582
|
[54] |
Jia B, Deng L, Chen R, Zhang Y and Fang X 2017 Acta Phys. Sin. 66 237801(in Chinese)
|
[55] |
Huang M, Chen D, Zhang L and Zhou J 2016 Chin. Phys. B 25 057303
|
[56] |
Sartorello G, Olivier N, Zhang J J, Yue W S, Gosztola D J, Wiederrecht G P, Wurtz G and Zayats A V 2016 ACS Photonics 3 1517
|
[57] |
Zhang K, Du C and Gao J 2017 Acta Phys. Sin. 66 227302(in Chinese)
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|