Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(4): 047303    DOI: 10.1088/1674-1056/27/4/047303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Double band-inversions of bilayer phosphorene under strain and their effects on optical absorption

Shi He(何诗), Mou Yang(杨谋), Rui-Qiang Wang(王瑞强)
Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Abstract  

Strain is a powerful tool to engineer the band structure of bilayer phosphorene. The band gap can be decreased by vertical tensile strain or in-plane compressive strain. At a critical strain, the gap is closed and the bilayer phosphorene is turn to be a semi-Dirac semimetal material. If the strain is stronger than the criterion, a band-inversion occurs and it re-happens when the strain is larger than another certain value. For the zigzag bilayer phosphorene ribbon, there are two edge band dispersions and each dispersion curve represents two degenerate edge bands. When the first band-inversion happens, one of the edge band dispersion disappears between the band-cross points while the other survives, and the latter will be eliminated between another pair of band-cross points of the second band-inversion. The optical absorption of bilayer phosphorene is highly polarized along armchair direction. When the strain is turn on, the optical absorption edge changes. The absorption rate for armchair polarized light is decreased by gap shrinking, while that for zigzag polarized light increases. The band-touch and band-inversion respectively result in the sublinear and linear of absorption curve versus light frequency in low frequency limit.

Keywords:  phosphorene      electronic structure      optical absorption      strain  
Received:  05 December 2017      Revised:  16 January 2018      Accepted manuscript online: 
PACS:  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  78.20.-e (Optical properties of bulk materials and thin films)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11774100 and 11474106).

Corresponding Authors:  Mou Yang     E-mail:  yang.mou@hotmail.com

Cite this article: 

Shi He(何诗), Mou Yang(杨谋), Rui-Qiang Wang(王瑞强) Double band-inversions of bilayer phosphorene under strain and their effects on optical absorption 2018 Chin. Phys. B 27 047303

[1] Xia F, Wang H and Jia Y 2014 Nat. Commun. 5 4458
[2] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[3] Rudenko A N, Brener S and Katsnelson M I 2016 Phys. Rev. Lett. 116 246401
[4] Li L, Kim J, Jin C, Ye G, Qiu D. Y, da Jornada F H, Shi Z, Chen L, Zhang Z, Yang F, Watanabe K, Taniguchi T, Ren W, Louie S G, Chen X, Zhang Y and Wang F 2017 Nat. Nanotechnol. 12 21
[5] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[6] Koenig S P, Doganov R A, Schmidt H, Neto A H and Özyilmaz B 2014 Appl. Phys. Lett. 104 103106
[7] Yin D and Yoon Y 2016 J. Appl. Phys. 119 214312
[8] Youngblood N, Chen C, Koester S J and Li M 2015 Nat. Photon. 9 247
[9] Buscema M, Groenendijk D J, Blanter S I, Steele G A, van der Zant H S J and Castellanos-Gomez A 2014 Nano Lett. 14 3347
[10] Tran V, Soklaski R, Liang Y and Yang L 2014 Phys. Rev. B 89 235319
[11] Duan H J, Yang M and Wang R Q 2016 Physica E 81 177
[12] Wei Q and Peng X 2014 Appl. Phys. Lett. 104 251915
[13] Peng X, Wei Q and Copple A 2014 Phys. Rev. B 90 085402
[14] Han X, Stewart H M, Shevlin S A, Richard C, Catlow A and Guo Z X 2014 Nano Lett. 14 4607
[15] Jiang J W and Park H S 2015 Phys. Rev. B 91 235118
[16] Elahi M, Khaliji K, Tabatabaei S M, Pourfath M and Asgari R 2015 Phys. Rev. B 91 115412
[17] Sisakht E T, Fazileh F, Zare M H, Zarenia M and Peeters F M 2016 Phys. Rev. B 94 085417
[18] Yang M, Duan H J and Wang R Q 2016 Phys. Scr. 91 105801
[19] Rudenko A N, Yuan S and Katsnelson M I 2015 Phys. Rev. B 92 085419
[20] Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723
[21] Rudenko A N, Yuan S and Katsnelson M I 2016 Phys. Rev. B 93 199906
[22] Harrison W A 1999 Elementary Electronic Structure (Singapore:World Scientific)
[23] Tang H, Jiang J W, Wang B S and Su Z B 2009 Solid State Commun. 149 82
[24] Ezawa M 2014 New J. Phys. 16 115004
[25] Yang M, Duan H J and Wang R Q 2015 JETP Lett. 102 610
[26] Yang M, Duan H J, He S, Zhang W L and Wang R Q 2016 Phys. Lett. A 380 3832
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[3] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[4] Strain engineering and hydrogen effect for two-dimensional ferroelectricity in monolayer group-IV monochalcogenides MX (M =Sn, Ge; X=Se, Te, S)
Maurice Franck Kenmogne Ndjoko, Bi-Dan Guo(郭必诞), Yin-Hui Peng(彭银辉), and Yu-Jun Zhao(赵宇军). Chin. Phys. B, 2023, 32(3): 036802.
[5] Bismuth doping enhanced tunability of strain-controlled magnetic anisotropy in epitaxial Y3Fe5O12(111) films
Yunpeng Jia(贾云鹏), Zhengguo Liang(梁正国), Haolin Pan(潘昊霖), Qing Wang(王庆), Qiming Lv(吕崎鸣), Yifei Yan(严轶非), Feng Jin(金锋), Dazhi Hou(侯达之), Lingfei Wang(王凌飞), and Wenbin Wu(吴文彬). Chin. Phys. B, 2023, 32(2): 027501.
[6] Theoretical study of M6X2 and M6XX' structure (M = Au, Ag; X,X' = S, Se): Electronic and optical properties, ability of photocatalytic water splitting, and tunable properties under biaxial strain
Jiaqi Li(李嘉琪), Xinlu Cheng(程新路), and Hong Zhang(张红). Chin. Phys. B, 2022, 31(9): 097101.
[7] Growth of high material quality InAs/GaSb type-II superlattice for long-wavelength infrared range by molecular beam epitaxy
Fang-Qi Lin(林芳祁), Nong Li(李农), Wen-Guang Zhou(周文广), Jun-Kai Jiang(蒋俊锴), Fa-Ran Chang(常发冉), Yong Li(李勇), Su-Ning Cui(崔素宁), Wei-Qiang Chen(陈伟强), Dong-Wei Jiang(蒋洞微), Hong-Yue Hao(郝宏玥), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), and Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2022, 31(9): 098504.
[8] Modulation of Schottky barrier in XSi2N4/graphene (X=Mo and W) heterojunctions by biaxial strain
Qian Liang(梁前), Xiang-Yan Luo(罗祥燕), Yi-Xin Wang(王熠欣), Yong-Chao Liang(梁永超), and Quan Xie(谢泉). Chin. Phys. B, 2022, 31(8): 087101.
[9] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[10] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[11] Valley-dependent transport in strain engineering graphene heterojunctions
Fei Wan(万飞), X R Wang(王新茹), L H Liao(廖烈鸿), J Y Zhang(张嘉颜),M N Chen(陈梦南), G H Zhou(周光辉), Z B Siu(萧卓彬), Mansoor B. A. Jalil, and Yuan Li(李源). Chin. Phys. B, 2022, 31(7): 077302.
[12] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[13] Effect of strain on charge density wave order in α-U
Liuhua Xie(谢刘桦), Hongkuan Yuan(袁宏宽), and Ruizhi Qiu(邱睿智). Chin. Phys. B, 2022, 31(6): 067103.
[14] Temperature dependence of bismuth structures under high pressure
Xiaobing Fan(范小兵), Shikai Xiang(向士凯), and Lingcang Cai(蔡灵仓). Chin. Phys. B, 2022, 31(5): 056101.
[15] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
No Suggested Reading articles found!