Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 124207    DOI: 10.1088/1674-1056/ac754b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Asymmetrical photonic spin Hall effect based on dielectric metasurfaces

Guangzhou Geng(耿广州)1, Ruhao Pan(潘如豪)1, Wei Zhu(朱维)2,†, and Junjie Li(李俊杰)1,‡
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Electronic and Electrical Engineering, Wuhan Textile University, Wuhan 430200, China
Abstract  The photonic spin Hall effect has attracted considerable research interest due to its potential applications in spin-controlled nanophotonic devices. However, realization of the asymmetrical photonic spin Hall effect with a single optical element is still a challenge due to the conjugation of the Pancharatnam-Berry phase, which reduces the flexibility in various applications. Here, we demonstrate an asymmetrical spin-dependent beam splitter based on a single-layer dielectric metasurface exhibiting strong and controllable optical response. The metasurface consists of an array of dielectric nanofins, where both varying rotation angles and feature sizes of the unit cells are utilized to create high-efficiency dielectric metasurfaces, which enables to break the conjugated characteristic of phase gradient. Thanks to the superiority of the phase modulation ability, when the fabricated metasurface is under normal incidence with a wavelength of 1550 nm, the left-handed circular polarization (LCP) light exhibits an anomalous refraction angle of 28.9°, while the right-handed circular polarization (RCP) light transmits directly. The method we proposed can be used for the flexible manipulation of spin photons and has potentials in high efficiency metasurfaces with versatile functionalities, especially with metasurfaces in a compact space.
Keywords:  dielectric metasurface      photonic spin Hall effect      asymmetrical optical response  
Received:  09 May 2022      Revised:  31 May 2022      Accepted manuscript online:  02 June 2022
PACS:  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  42.79.Hp (Optical processors, correlators, and modulators)  
  78.67.-n (Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074420, U21A20140, and 61905274), the Beijing Municipal Science & Technology Commission, Administrative Commission of Zhongguancun Science Park (Grant No. Z211100004821009), the Chinese Academy of Sciences through the Project for Young Scientists in Basic Research (Grant No. YSBR-021), and the Synergic Extreme Condition User Facility.
Corresponding Authors:  Wei Zhu, Junjie Li     E-mail:  zhuwei@wtu.edu.cn;jjli@iphy.ac.cn

Cite this article: 

Guangzhou Geng(耿广州), Ruhao Pan(潘如豪), Wei Zhu(朱维), and Junjie Li(李俊杰) Asymmetrical photonic spin Hall effect based on dielectric metasurfaces 2022 Chin. Phys. B 31 124207

[1] Ling X, Zhou X, Huang K, Liu Y, Qiu C W, Luo H and Wen S 2017 Rep. Prog. Phys. 80 066401
[2] Hosten O and Kwiat P 2008 Science 319 787
[3] Ren J L, Li Y, Lin Y D, Qin Y, Wu R, Yang J B, Xiao Y F, Yang H and Gong Q H 2012 Appl. Phys. Lett. 101 171103
[4] Bliokh K Y, Niv A, Kleiner V and Hasman E 2008 Nat. Photonics 2 748
[5] Zhou X, Sheng L and Ling X 2018 Sci. Rep. 8 1221
[6] Antognozzi M, Bermingham C R, Harniman R L, Simpson S, Senior J, Hayward R, Hoerber H, Dennis M R, Bekshaev A Y, Bliokh K Y and Nori F 2016 Nat. Phys. 12 731
[7] Zhu T F, Lou Y J, Zhou Y H, Zhang J H, Huang J Y, Li Y, Luo H L, Wen S C, Zhu S Y, Gong Q H, Qiu M and Ruan Z C 2019 Phys. Rev. Appl. 11 034043
[8] Zhou J, Qian H, Chen C F, Zhao J, Li G, Wu Q, Luo H, Wen S and Liu Z 2019 Proc. Natl. Acad. Sci. USA 116 11137
[9] Zhou X X, Ling X H, Luo H L and Wen S C 2012 Appl. Phys. Lett. 101 251602
[10] Chen S Z, Ling X H, Shu W X, Luo H L and Wen S C 2020 Phys. Rev. Appl. 13 014057
[11] Wang R S, Zhou J X, Zeng K M, Chen S Z, Ling X H, Shu W X, Luo H L and Wen S C 2020 APL Photonics 5 016105
[12] Liu J W, Zeng K M, Xu W H, Chen S Z, Luo H L and Wen S C 2019 Appl. Phys. Lett. 115 251102
[13] Zhou J, Qian H, Zhao J, Tang M, Wu Q, Lei M, Luo H, Wen S, Chen S and Liu Z 2021 Natl. Sci. Rev. 8 nwaa176
[14] He Y L, Xie Z Q, Yang B, Chen X Y, Liu J M, Ye H P, Zhou X X, Li Y, Chen S Q and Fan D Y 2020 Photonics Res. 8 963
[15] Jin R C, Tang L L, Li J Q, Wang J, Wang Q J, Liu Y M and Dong Z G 2020 ACS Photonics 7 512
[16] Pendry J B 2000 Phys. Rev. Lett. 85 3966
[17] Pendry J B, Holden A J, Robbins D J and Stewart W J 1998 J. Phys.-Condens. Mat. 10 4785
[18] Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F and Smith D R 2006 Science 314 977
[19] Shelby R A, Smith D R and Schultz S 2001 Science 292 77
[20] Qin Y, Li Y, He H and Gong Q 2009 Opt. Lett. 34 2551
[21] Shitrit N, Bretner I, Gorodetski Y, Kleiner V and Hasman E 2011 Nano Lett. 11 2038
[22] Ling X H, Zhou X X, Yi X N, Shu W X, Liu Y C, Chen S Z, Luo H L, Wen S C and Fan D Y 2015 Light Sci. Appl. 4 e290
[23] Bliokh K Y and Bliokh Y P 2006 Phys. Rev. Lett. 96 073903
[24] Onoda M, Murakami S and Nagaosa N 2004 Phys. Rev. Lett. 93 083901
[25] Arbabi A, Horie Y, Bagheri M and Faraon A 2015 Nat. Nanotechnol. 10 937
[26] Jahani S and Jacob Z 2016 Nat. Nanotechnol. 11 23
[27] Koshelev K, Kruk S, Melik-Gaykazyan E, Choi J H, Bogdanov A, Park H G and Kivshar Y 2020 Science 367 288
[28] Wang B, Dong F, Li Q T, Yang D, Sun C, Chen J, Song Z, Xu L, Chu W, Xiao Y F, Gong Q and Li Y 2016 Nano Lett. 16 5235
[29] Shalaev M I, Sun J, Tsukernik A, Pandey A, Nikolskiy K and Litchinitser N M 2015 Nano Lett. 15 6261
[30] Zhang S F, Huang L L, Li X, Zhao R Z, Wei Q S, Zhou H Q, Jiang Q, Geng G Z, Li J J, Li X W and Wang Y T 2021 ACS Photonics 8 1746
[31] Zhao R Z, Xiao X F, Geng G Z, Li X, Li J J, Li X W, Wang Y T and Huang L L 2021 Adv. Funct. Mater. 31 2100406
[32] Li X, Zhao R Z, Wei Q S, Geng G Z, Li J J, Zhang S, Huang L L and Wang Y T 2021 Adv. Funct. Mater. 31 2103326
[33] Geng G Z, Zhu W, Pan R H, Zhang Z S, Gu C Z and Li J J 2021 Nano Today 38 101145
[34] Zhu W, Yang R S, Geng G Z, Fan Y C, Guo X Y, Li P, Fu Q H, Zhang F L, Gu C Z and Li J J 2020 Nanophotonics 9 4327
[35] Hsiao H H, Chu C H and Tsai D P 2017 Small Methods 1 1600064
[36] Li S Q, Li X Y, Wang G X, Liu S, Zhang L X, Zeng C, Wang L R, Sun Q B, Zhao W and Zhang W F 2019 Adv. Opt. Mater. 7 1801365
[1] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[2] Enhancing terahertz photonic spin Hall effect via optical Tamm state and the sensing application
Jie Cheng(程杰), Jiahao Xu(徐家豪), Yinjie Xiang(项寅杰), Shengli Liu(刘胜利), Fengfeng Chi(迟逢逢), Bin Li(李斌), and Peng Dong(董鹏). Chin. Phys. B, 2022, 31(12): 124202.
[3] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[4] Modulation and enhancement of photonic spin Hall effect with graphene in broadband regions
Peng Dong(董鹏), Gaojun Wang(王高俊), and Jie Cheng(程杰). Chin. Phys. B, 2021, 30(3): 034202.
No Suggested Reading articles found!