Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 048401    DOI: 10.1088/1674-1056/23/4/048401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Computation of the locus crossing point location of MC circuit

Liu Hai-Jun (刘海军), Li Zhi-Wei (李智炜), Bu Kai (步凯), Sun Zhao-Lin (孙兆林), Nie Hong-Shan (聂洪山)
College of Electronic Science and Engineering, National University of Defense Technology, Changsha 410073, China
Abstract  In this paper, the crossing point property of the i-v hysteresis curve in a memristor-capacitor (MC) circuit is analyzed. First, the ideal passive memristor on the crossing point property of i-v hysteresis curve is studied. Based on the analysis, the analytical derivation with respect to the crossing point location of MC circuit is given. Then the example of MC with linear memristance-versus-charge state map is demonstrated to discuss the drift property of cross-point location, caused by the frequency and capacitance value.
Keywords:  memristor      memristive system      crossing point      pinched hysteresis loop  
Received:  03 September 2013      Revised:  18 September 2013      Accepted manuscript online: 
PACS:  84.30.Bv (Circuit theory)  
  85.35.-p (Nanoelectronic devices)  
  84.32.-y (Passive circuit components)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61171017).
Corresponding Authors:  Liu Hai-Jun     E-mail:  liuhaijun@nudt.edu.cn
About author:  84.30.Bv; 85.35.-p; 84.32.-y

Cite this article: 

Liu Hai-Jun (刘海军), Li Zhi-Wei (李智炜), Bu Kai (步凯), Sun Zhao-Lin (孙兆林), Nie Hong-Shan (聂洪山) Computation of the locus crossing point location of MC circuit 2014 Chin. Phys. B 23 048401

[1] Salaoru I, Khiat A, Li Q J, Berdan R, Papavassiliou C, Toumazou C and Prodromakis T Acs. Nano. to be published
[2] Ligang G, Alibart F and Strukov D B 2013 IEEE T. Nanotechnol. 12 115
[3] Pickett M D, Medeiros-Ribeiro G and Williams R S 2013 Nat. Mater. 12 114
[4] Li Z W, Liu H J and Xu X 2013 Acta Phys. Sin. 62 096401 (in Chinese)
[5] Fang X D, Tang Y H and Wu J J 2012 Chin. Phys. B 21 098901
[6] Tian X B and Xu H 2013 Chin. Phys. B 22 088501
[7] Wang W D, Yu Q, Xu C X and Cui Y H 2009 International Conference on Communications, Circuits and Systems, July 23-25, 2009, Milpitas, California, USA, p. 969
[8] Bao B C, Xu J P, Zhou G H, Ma Z H and Zou L 2011 Chin. Phys. B 20 120502
[9] Bao B C, Shi G D, Xu J P, Liu Z and Pan S H 2011 Sci. China: Technol. Sci. 54 1
[10] Joglekar Y N and Wolf S J 2009 Eur. J. Phys. 30 661
[11] Slipko V A, Pershin Y V and Ventra M D 2013 Phys. Rev. E 87 042103
[12] Song D H, Lü M F, Reng X, Li M M and Zu Y X 2012 Acta Phys. Sin. 61 118101 (in Chinese)
[13] Leon C 2003 P. IEEE 9 1830
[14] Biolek Z, Biolek D and Biolkova V 2012 IEEE T. Circuits-II 59 607
[15] Biolek D, Biolek Z and Biolkova V 2011 Electron. Lett. 47 5
[16] Leon C 2011 Appl. Phys. A 102 765
[17] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[4] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[5] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[6] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[7] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[8] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[9] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[10] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[11] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[12] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[13] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[14] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[15] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
No Suggested Reading articles found!