Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 040702    DOI: 10.1088/1674-1056/ac380b
GENERAL Prev   Next  

Memristor-based multi-synaptic spiking neuron circuit for spiking neural network

Wenwu Jiang(蒋文武)1, Jie Li(李杰)1, Hongbo Liu(刘洪波)1, Xicong Qian(钱曦聪)1, Yuan Ge(葛源)1, Lidan Wang(王丽丹)1,2,3,4, and Shukai Duan(段书凯)1,2,3,4,†
1 College of Artificial Intelligence, Southwest University, Chongqing 400715, China;
2 National&Local Joint Engineering Laboratory of Intelligent Transmission and Control Technology, Chongqing 400715, China;
3 Brain-inspired Computing and Intelligent Control of Chongqing Key Laboratory, Chongqing 400715, China;
4 Chongqing Brain Science Collaborative Innovation Center, Chongqing 400715, China
Abstract  Spiking neural networks (SNNs) are widely used in many fields because they work closer to biological neurons. However, due to its computational complexity, many SNNs implementations are limited to computer programs. First, this paper proposes a multi-synaptic circuit (MSC) based on memristor, which realizes the multi-synapse connection between neurons and the multi-delay transmission of pulse signals. The synapse circuit participates in the calculation of the network while transmitting the pulse signal, and completes the complex calculations on the software with hardware. Secondly, a new spiking neuron circuit based on the leaky integrate-and-fire (LIF) model is designed in this paper. The amplitude and width of the pulse emitted by the spiking neuron circuit can be adjusted as required. The combination of spiking neuron circuit and MSC forms the multi-synaptic spiking neuron (MSSN). The MSSN was simulated in PSPICE and the expected result was obtained, which verified the feasibility of the circuit. Finally, a small SNN was designed based on the mathematical model of MSSN. After the SNN is trained and optimized, it obtains a good accuracy in the classification of the IRIS-dataset, which verifies the practicability of the design in the network.
Keywords:  memristor      multi-synaptic circuit      spiking neuron      spiking neural network (SNN)  
Received:  25 June 2021      Revised:  12 August 2021      Accepted manuscript online:  10 November 2021
PACS:  07.50.Ek (Circuits and circuit components)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  84.32.-y (Passive circuit components)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB1306600), the National Natural Science Foundation of China (Grant Nos. 62076207, 62076208, and U20A20227), and the Science and Technology Plan Program of Yubei District of Chongqing (Grant No. 2021-17).
Corresponding Authors:  Shukai Duan     E-mail:  duansk@swu.edu.cn

Cite this article: 

Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯) Memristor-based multi-synaptic spiking neuron circuit for spiking neural network 2022 Chin. Phys. B 31 040702

[1] Schmidhuber J 2015 Neural Netw. 61 85
[2] Silver D, Huang A, Maddison C J, Guez A, Sifre L, van den Driessche G, Schrittwieser J, Antonoglou I, Panneershelvam V, Lanctot M, Dieleman S, Grewe D, Nham J, Kalchbrenner N, Sutskever I, Lillicrap T, Leach M, Kavukcuoglu K, Graepel T and Hassabis D 2016 Nature 529 484
[3] Krizhevsky A, Sutskever I and Hinton G E 2017 Commun. ACM 60 84
[4] Shin H C, Roth H R, Gao M C, Lu L, Xu Z Y, Nogues I, Yao J H, Mollura D and Summers R M 2016 IEEE Trans. Med. Imaging 35 1285
[5] Maass W 1997 Transactions of the Society for Computer Simulation International 14 1659
[6] Roy K, Jaiswal A and Panda P 2019 Nature 575 607
[7] Chua L O 1971 IEEE Transactions on Circuit Theory CT18 507
[8] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[9] Jiang W, Xie B, Liu C C and Shi Y 2019 Nature Electronics 2 376
[10] Jo S H, Chang T, Ebong I, Bhadviya B B, Mazumder P and Lu W 2010 Nano Lett. 10 1297
[11] Kim H 2012 Proc. IEEE 100 2061
[12] Wu X, Saxena V and Kehan Z 2015 Proceedings of the International Joint Conference on Neural Networks, July 12-17, 2015, Killarney, Ireland, p. 1
[13] Liu H J, Chen C L, Zhu X, Sun S Y, Li Q J and Li Z W 2020 Chin. Phys. B 29 028502
[14] Kim K, Park S, Hu S M, Song J, Lim W, Jeong Y, Kim J, Lee S, Kwak J Y, Park J, Park J K, Ju B K, Jeong D S and Kim I 2020 Npg Asia Materials 77 13
[15] Howard G, Gale E, Bull L, Costello B d L and Adamatzky A 2012 IEEE Transactions on Evolutionary Computation 16 711
[16] Liu Y D and Wang L M 2014 Acta Phys. Sin. 63 080503 (in Chinese)
[17] Hu M, Chen Y R, Yang J J, Wang Y and Li H 2017 IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 36 1353
[18] Zayer F, Dghais W, Benabdeladhim M and Hamdi B 2019 AEU-Int. J. Electron. Commun. 100 56
[19] Hajiabadi Z and Shalchian M 2021 J. Comput. Electron. 20 1625
[20] Hodgkin A L and Huxley A F 1952 J. Physiol.-London 117 500
[21] Izhikevich E M 2003 IEEE Transactions on Neural Networks 14 1569
[22] Brette R 2005 Journal of Neurophysiology 94 3637
[23] Ohtani T and Saito T 2008 IEICE Trans. Fundamentals 91 891
[24] Cruz-Albrecht J M 2012 IEEE Transactions on Biomedical Circuits & Systems 6 246
[25] Afifi A, Ayatollahi A, Raissi F and Hajghassem H 2010 IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences E93A 1670
[26] Babacan Y, Kacar B and Gurkan K 2016 Neurocomputing 203 86
[27] Kim T, Oh M H, Kwon M W and Park B G 2018 Electron. Lett. 54 1022
[28] Zhao L, Hong Q H, Wang X P 2018 Neurocomputing 314 207
[29] Woo S, Cho J, Lim D, Park Y S, Cho K and Kim S 2020 IEEE Trans. Electron Dev. 67 2995
[30] Serb A, Bill J, Khiat A, Berdan R, Legenstein R and Prodromakis T 2016 Nat. Commun. 7 12611
[31] Peng Y, Wu H, Gao B, Eryilmaz S B and Qian H 2017 Nat. Commun. 8 15199
[32] Hu M, Graves C E, Li C, Li Y N, Ge N, Montgomery E, Davila N, Jiang H, Williams R S, Yang J J S, Xia Q F and Strachan J P 2018 Adv. Mater. 30 1705914
[33] Li C, Wang Z, Rao M, Belkin D, Song W, Jiang H, Yan P, Li Y, Lin P and Hu M 2019 Nature Machine Intelligence 1 49
[34] Cai F X, Correll J M, Lee S H, Lim Y, Bothra V, Zhang Z Y, Flynn M P and Lu W D 2019 Nature Electronics 2 290
[35] Yao P, Wu H Q, Gao B, Tang J S, Zhang Q T, Zhang W Q, Yang J J and Qian H 2020 Nature 577 641
[36] Chen Y and Wang X 2009 Proceedings of the IEEE/ACM International Symposium on Nanoscale Architectures, July 30-31, 2009, San Francisco, CA, USA, p. 7
[37] Yong T, Nyengaard J R, Groot D and Gundersen H 2010 Synapse 41 258
[38] Aleksander I 2004 Nature 432 18
[39] Natschlager T and Ruf B 1998 Network-Computation in Neural Systems 9 319
[40] Fauth M, Worgotter F and Tetzlaff C 2015 PLoS Comput. Biol. 11 e1004031
[41] Bohte S M, Kok J N and La Poutre H 2002 Neurocomputing 48 Pii s0925-2312(01)00658-0 17
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[4] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[5] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[6] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[7] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[8] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[9] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[10] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[11] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[12] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[13] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[14] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
[15] Artificial synaptic behavior of the SBT-memristor
Gang Dou(窦刚), Ming-Long Dou(窦明龙), Ren-Yuan Liu(刘任远), and Mei Guo(郭梅). Chin. Phys. B, 2021, 30(7): 078401.
No Suggested Reading articles found!