INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
SBT-memristor-based crossbar memory circuit |
Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚)† |
College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China |
|
|
Abstract Implementing memory using nonvolatile, low power, and nano-structure memristors has elicited widespread interest. In this paper, the SPICE model of Sr0.95Ba0.05TiO3 (SBT)-memristor was established and the corresponding characteristic was analyzed. Based on an SBT-memristor, the process of writing, reading, and rewriting of the binary and multi-value memory circuit was analyzed. Moreover, we verified the SBT-memristor-based 4×4 crossbar binary and multi-value memory circuits through comprehensive simulations, and analyzed the sneak-path current and memory density. Finally, we apply the 8×8 crossbar multi-value memory circuits to the images memory.
|
Received: 03 November 2020
Revised: 15 December 2020
Accepted manuscript online: 04 January 2021
|
PACS:
|
84.32.-y
|
(Passive circuit components)
|
|
85.25.Hv
|
(Superconducting logic elements and memory devices; microelectronic circuits)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61703246 and 61703247), the Qingdao Science and Technology Plan Project (Grant No. 19-6-2-2-cg), and the Elite Project of Shandong University of Science and Technology. |
Corresponding Authors:
Gang Dou
E-mail: dougang521@sdust.edu.cn
|
Cite this article:
Mei Guo(郭梅), Ren-Yuan Liu(刘任远), Ming-Long Dou(窦明龙), and Gang Dou(窦刚) SBT-memristor-based crossbar memory circuit 2021 Chin. Phys. B 30 068402
|
[1] Yu S M and Chen P Y 2016 IEEE Solid State Circ. Mag. 8 43 [2] Yakopcic C, Taha T M, Subramanyam G, Pino R E and Rogers S 2011 Proceedings of the International Joint Conference on Neural Networks, July 31-August 5, 2011 California, USA, p. 3243 [3] Chua L O 1971 IEEE Trans. Circ. Theory 18 507 [4] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80 [5] Das M, Kumar A, Kumar S, Mandal B, Siddharth G, Kumar P, Htay M T and Mukherjee S 2020 IEEE Trans. Nanotechnol. 19 332 [6] Kumar S, Strachan J P and Williams R S 2017 Nature 548 318 [7] Cheng P F, Sun K and Hu Y H 2016 Nano Lett. 16 572 [8] Miao F, Yi W, Goldfarb I, Yang J J, Zhang M X, Pickett M D, Strachan J P, Medeiros R G and Williams R S 2012 ACS Nano 6 2312 [9] Wang Z W, Yin M H, Zhang T, Cai Y M, Wang Y Y, Yang Y C and Huang R 2016 Nanoscale 8 14015 [10] Nandakumar S R, Minvielle M, Nagar S, Dubourdieu C and Rajendran B 2016 Nano Lett. 16 1602 [11] Li C L, Li Z Y, Feng W, Tong Y N, Du J R and Wei D Q 2019 AEU Int. J. Electron. Commun. 110 152861 [12] Li H M, Yang Y F, Li W, He S B and Li C L 2020 Eur. Phys. J. Plus 135 579 [13] Liu H J, Chen C L, Zhu X, Sun S Y, Li Q J and Li Z W 2020 Chin. Phys. B 29 028502 [14] Liu Y C, Lin Y, Wang Z Q and Xu H Y 2019 Acta Phys. Sin. 68 168504 (in Chinese) [15] Hong Q H, Yan R A, Wang C H and Sun J R 2020 IEEE Trans. Biomed. Circuits Syst. 14 1036 [16] Hong Q H, Shi Z R, Sun J R and Du S C 2021 Neural Comput. Appl. 33 4901 [17] Wang Z R, Joshi S, Savelev, S E, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan J P, Li Z Y, Wu Q, Barnell M, Li G L, Xin H L, Williams R S, Xia Q F and Yang J J 2017 Nat. Mater. 16 101 [18] Soudry D, Castro D D, Gal A, Kolodny A and Kvatinsky S 2017 IEEE Trans. Neural Networks Learn. Sys. 26 2408 [19] Di V M, Pershin Y V and Chua L O 2009 Proc. IEEE 97 1717 [20] Mozaffari S N, Tragoudas S and Haniotakis T 2017 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36 1018 [21] Zhu X, Yang X J, Wu C Q, Xiao N, Wu J J and Yi X 2013 IEEE Trans. Circuits Syst. Express Briefs 60 682 [22] Zhou Z Y, Zhao J H, Chen A P, Pei Y F, Xiao Z A, Wang G, Chen J S, Fu G S and Yan X B 2020 Mater. Horizons 7 1106 [23] Dongale T D, Patil K P, Mullani S B, More K V, Delekar S D, Patil P S, Gaikwad P K and Kamat R K 2015 Mater. Sci. Semicond. Process. 35 174 [24] Chen C Y, Shih H C, Wu C W, Lin C H, Chiu P F, Sheu S S and Chen F T 2015 IEEE Trans. Comput. 64 180 [25] Shim W, Luo Y D, Seo J S and Yu S M 2020 IEEE Trans. Electron Dev. 67 2318 [26] Alfaro R D, Sassine G, Rafhay Q, Ghibaudo G, Molas G and Nowak E 2019 IEEE Trans. Electron Dev. 66 3318 [27] Yin S H, Sun X Y, Yu S M and Seo J S 2020 IEEE Trans. Electron Dev. 67 4185 [28] Jin F Y, Chang K C, Chang T C, Tsai T M, Pan C H, Lin C Y, Chen P H, Chen M C, Huang H C, Lo I, Zheng J C and Sze S M 2016 Appl. Phys. Express 9 061501 [29] Patel K, Cottom J, Bosman M, Kenyon A J and Shluger A L 2019 Microelectron. Reliab. 98 144 [30] Baek I J and Cho W J 2017 J. Nanosci. Nanotechnol. 17 3065 [31] Chen F T, Lee H Y, Chen Y S, Hsu Y Y, Zhang L J, Chen P S, Chen W S, Gu P Y, Liu W H, Wang S M, Tsai C H, Sheu S S, Tsai M J and Huang R 2011 Sci. China Inf. Sci. 54 1073 [32] Raghavan N, Frey D D, Bosman M and Pey K L 2015 Microelectron. Reliab. 55 1422 [33] Mehonic A, Gerard T and Kenyon A J 2017 Appl. Phys. Lett. 111 233502 [34] Zidan M A, Fahmy H A H, Hussain M M and Salama K N 2013 Microelectron. J. 44 176 [35] Krestinskaya O, Ibrayev T and James A P 2018 IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 37 1143 [36] Shaarawy N, Emara A, El-Naggar A M, Elbtity M E, Ghoneima M and Radwan A G 2018 Microelectron. J. 73 75 [37] Dubey S K and Islam A 2020 Microsyst. Technol. 26 1325 [38] Rabbani P, Dehghani R and Shahpari N 2015 Microelectron. J. 46 1283 [39] Zhang Y M, Dou G, Sun Z, Guo M and Li Y X 2017 Int. J. Bifurc. Chaos 27 1750148 [40] Dou G, Yu Y, Guo M, Zhang Y M, Sun Z and Li Y X 2017 Chin. Phys. Lett. 34 038502 [41] Sharif K F, Islam R, Biswas S N and Groza V 2017 Proceedings of IEEE Symposium on Computer Applications &$ Industrial Electronics, April 24-25, 2017, Langkawi, Malaysia, p. 37 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|