Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(8): 088401    DOI: 10.1088/1674-1056/26/8/088401
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology

Jia-Xin Zheng(郑佳欣)1, Xiao-Hua Ma(马晓华)1, Yang Lu(卢阳)2, Bo-Chao Zhao(赵博超)2, Heng-Shuang Zhang(张恒爽)2, Meng Zhang(张濛)1, Li-Xiang Chen(陈丽香)1, Qing Zhu(朱青)1, Yue Hao(郝跃)2
1 School of Advanced Material and Nanotechnology, Xidian University, Xi'an 710071, China;
2 School of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  

The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology has been investigated deeply. The fabricated 1-nH spiral inductor on SiC substrate demonstrates a self-resonant frequency of 51.6 GHz, with a peak Q-fact of 12.14 at 22.1 GHz. From the S-parameters measurements, the exponential decay phenomenon is observed for L, Q-factor, and SRF with the air-bridge height decreasing, and an analytic expression is concluded to exactly fit the measured data which can be used to predict the performance of the spiral inductor. All the coefficients in the formula have specific meaning. By means of establishing the lumped model, the parasitic coupling capacitance of the air-bridge has been extracted and presents the exponential decay with the air-bridge heights decreasing which indicates that this capacitor is directly related to the coupling effect of the air-bridge. Through the electromagnetic field distribution simulation, the details of the electric field around the air-bridge have been presented which demonstrate the formation and the variation principles of the coupling effect.

Keywords:  coupling effect      air-bridge      broadband spiral inductor      exponential decay      SiC      MMIC  
Received:  20 March 2017      Revised:  03 May 2017      Accepted manuscript online: 
PACS:  84.32.-y (Passive circuit components)  
  84.32.Hh (Inductors and coils; wiring)  
  84.40.Dc (Microwave circuits)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61334002 and 61474091) and the National High Technology Research and Development Program of China (Grant No. 2015AA016801).

Corresponding Authors:  Xiao-Hua Ma     E-mail:  xhma@xidian.edu.cn
About author:  0.1088/1674-1056/26/8/

Cite this article: 

Jia-Xin Zheng(郑佳欣), Xiao-Hua Ma(马晓华), Yang Lu(卢阳), Bo-Chao Zhao(赵博超), Heng-Shuang Zhang(张恒爽), Meng Zhang(张濛), Li-Xiang Chen(陈丽香), Qing Zhu(朱青), Yue Hao(郝跃) The coupling effect of air-bridges on broadband spiral inductors in SiC-based MMIC technology 2017 Chin. Phys. B 26 088401

[1] Fang M, Wang J Y, Lin S X, Meng D, Cai Y, Hao Y L and Wen C P 2011 IEEE 4th International Symposium on Microwave, Antenna, Propagation, and EMC Technologies for Wireless Communications (MAPE), November 1-3, 2011, Beijing, China, p. 400
[2] Burghartz J N, Edelstein D C, Jenkins K A and Kwark Y H 1997 IEEE Transactions on Microwave Theory and Techniques 45 1961
[3] Ribas R P, Lescot J, Leclercq J L, Bennouri N, Karam J M and Courtois B 1998 IEEE Electron Dev. Lett. 19 285
[4] Shepherd P R 1986 IEEE Transactions on Microwave Theory and Technique MTT-34 467
[5] Tang Y, Liu B, Zhang L, Pan J, Yang L W and Wang Y 2008 Solid-State Electron. 52 1058
[6] Teo T H, Choi Y B, Liao H L, Xiong Y Z and Fu J S 2004 Solid-State Electron. 48 1643
[7] Hsu H M and Hsieh M M 2008 Solid-State Electron. 52 998
[8] Cao M Y, Zhang K, Chen Y H, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 037305
[9] Zheng J X, Ma X H, Lu Y, Zhao B C, Zhang H H, Zhang M, Cao M Y and Hao Y 2015 Chin. Phys. B 24 107305
[10] Huo X, Chen K J and Chan P C H 2002 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, June, 2002, p. 403
[11] Zhang Z Q and Liao X P 2012 IEEE Sensors Journal 12 1853
[12] Shih Y C, Pao C K and Itoh T 1992 IEEE MTT-S International Microwave Symposium Digest, June, 1-5, 1992, Albuquerque, NM, USA, 3 p. 1345
[13] Hettak K, Ross T, Elgaid K, Thayne I G and Wight J 2011 Asia-Pacific Microwave Conference, December 5-8, 2011, Melbourne, Australia, p. 1070
[14] Goncharenko A V, Lozovski V Z and Venger E F 2000 Opt. Commun. 174 19
[15] Jin J M 2002 The Finite Element Method in Electromagnetics (New York: John Wiley & Sons. Inc.)
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[3] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[4] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[5] Analysis of high-temperature performance of 4H-SiC avalanche photodiodes in both linear and Geiger modes
Xing-Ye Zhou(周幸叶), Yuan-Jie Lv(吕元杰), Hong-Yu Guo(郭红雨), Guo-Dong Gu(顾国栋), Yuan-Gang Wang(王元刚), Shi-Xiong Liang(梁士雄), Ai-Min Bu(卜爱民), and Zhi-Hong Feng(冯志红). Chin. Phys. B, 2023, 32(3): 038502.
[6] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[7] Effect of kinetic ions on the toroidal double-tearing modes
Ruibo Zhang(张睿博), Lei Ye(叶磊), Yang Chen, Nong Xiang(项农), and Xiaoqing Yang(杨小庆). Chin. Phys. B, 2023, 32(2): 025203.
[8] High performance SiC trench-type MOSFET with an integrated MOS-channel diode
Jie Wei(魏杰), Qinfeng Jiang(姜钦峰), Xiaorong Luo(罗小蓉), Junyue Huang(黄俊岳), Kemeng Yang(杨可萌), Zhen Ma(马臻), Jian Fang(方健), and Fei Yang(杨霏). Chin. Phys. B, 2023, 32(2): 028503.
[9] Experiment and simulation on degradation and burnout mechanisms of SiC MOSFET under heavy ion irradiation
Hong Zhang(张鸿), Hongxia Guo(郭红霞), Zhifeng Lei(雷志锋), Chao Peng(彭超), Zhangang Zhang(张战刚), Ziwen Chen(陈资文), Changhao Sun(孙常皓), Yujuan He(何玉娟), Fengqi Zhang(张凤祁), Xiaoyu Pan(潘霄宇), Xiangli Zhong(钟向丽), and Xiaoping Ouyang(欧阳晓平). Chin. Phys. B, 2023, 32(2): 028504.
[10] Molecular dynamics simulation of interaction between nanorod and phospholipid molecules bilayer
Xin Wang(王鑫), Xiang-Qin Li(李香琴), Tian-Qing Liu(刘天庆), Li-Dan Zhao(赵丽丹), Ke-Dong Song(宋克东), and Dan Ge(葛丹). Chin. Phys. B, 2023, 32(1): 016201.
[11] Josephson vortices and intrinsic Josephson junctions in the layered iron-based superconductor Ca10(Pt3As8)((Fe0.9Pt0.1)2As2)5
Qiang-Tao Sui(随强涛) and Xiang-Gang Qui(邱祥冈). Chin. Phys. B, 2022, 31(9): 097403.
[12] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[13] Definition and expression of non-symmetric physical properties in space for uniaxial crystals
Xiaojie Guo(郭晓杰), Lijuan Chen(陈丽娟), Zeliang Gao(高泽亮), Xin Yin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2022, 31(9): 096103.
[14] Substitutions of vertex configuration of Ammann-Beenker tiling in framework of Ammann lines
Jia-Rong Ye(叶家容), Wei-Shen Huang(黄伟深), and Xiu-Jun Fu(傅秀军). Chin. Phys. B, 2022, 31(8): 086101.
[15] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
No Suggested Reading articles found!