Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 048402    DOI: 10.1088/1674-1056/23/4/048402
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Three-dimensional simulation method of multipactor in microwave components for high-power space application

Li Yun (李韵)a, Cui Wan-Zhao (崔万照)a, Zhang Na (张娜)a, Wang Xin-Bo (王新波)a, Wang Hong-Guang (王洪广)b, Li Yong-Dong (李永东)b, Zhang Jian-Feng (张剑锋)c
a National Key Laboratory of Science and Technology on Space Science, China Academy of Space Technology (Xi'an), Xi'an 710100, China;
b Key Laboratory of Physical Electronics and Devices of the Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, China;
c State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
Abstract  Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain method and the particle tracing method, such an algorithm is self-consistent and accurate since the interaction between electromagnetic fields and particles is properly modeled. In the time domain aspect, the generation of multipactor can be easily visualized, which makes it possible to gain a deeper insight into the physical mechanism of this effect. In addition to the classic secondary electron emission model, the measured practical secondary electron yield is used, which increases the accuracy of the algorithm. In order to validate the method, the impedance transformer and ridge waveguide filter are studied. By analyzing the evolution of the secondaries obtained by our method, multipactor thresholds of these components are estimated, which show good agreement with the experimental results. Furthermore, the most sensitive positions where multipactor occurs are determined from the phase focusing phenomenon, which is very meaningful for multipactor analysis and design.
Keywords:  multipactor      numerical method      three-dimensional      high-power      threshold  
Received:  20 March 2013      Revised:  03 June 2013      Accepted manuscript online: 
PACS:  84.32.-y (Passive circuit components)  
  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
  79.20.Ap (Theory of impact phenomena; numerical simulation)  
Fund: Project supported by the National Key Laboratory Foundation, China (Grant No. 9140C530103110C5301).
Corresponding Authors:  Li Yun     E-mail:  genliyun@126.com
About author:  84.32.-y; 52.40.Db; 79.20.Ap

Cite this article: 

Li Yun (李韵), Cui Wan-Zhao (崔万照), Zhang Na (张娜), Wang Xin-Bo (王新波), Wang Hong-Guang (王洪广), Li Yong-Dong (李永东), Zhang Jian-Feng (张剑锋) Three-dimensional simulation method of multipactor in microwave components for high-power space application 2014 Chin. Phys. B 23 048402

[1] Vaughan J R M 1988 Multipactor. IEEE Trans. Electron Dev. ED-35 1172
[2] Zhu F, Proch D and Hao J K 2005 Chin. Phys. 14 494
[3] Lu Q L, Zhou Z Y, Shi L Q and Zhao G Q 2005 Chin. Phys. 14 1465
[4] Woode A and Petit J 1990 ESA Journal-European Space Agency 14 467
[5] Rozario N and Lenzing H 1994 IEEE Trans. MTT 42 558
[6] Vahedi V and Surendra M 1995 Comput. Phys. Commum. 87 179
[7] Fan J Q and Hao J H 2011 Chin. Phys. B 20 068402
[8] Liu Z L, Zhang X F, Yao K L, Wei H L and Huang Y M 2004 Chin. Phys. 13 2115
[9] ESA-ESTEC 2003 Space Engineering: Multipacting Design and Test. ESA Publication Division, the Netherlands, ECSS-20-01A
[10] Vicente C, Mattes M, Wolk D, Mottet B, Hartnagel H L, Mosig J R and Raboso D 2005 Proc. IEEE MTT-S Int. Microw. Symp. Dig. p. 1055
[11] Kossyi I A, Luk'yanchikov G S, Semenov V E, Zharova N A, Lisak M and Puech J 2010 Appl. Phys. 43 345206
[12] Frotanpour A, Dadashzadeh G, Shahabadi M and Gimeno B 2011 IEEE Trans. Electron Dev. 58 876
[13] Rasch J, Semenov V E, Rakova E, Anderson D, Johansson J F, Lisak M and Puech J 2011 IEEE Trans. Plasma Sci. 39 1786
[14] Semenov V E, Rakova E I, Sazontov A G, Nefedov I M, Pozdnyakova V I, Shereshevskii I A, Anderson D, Lisak M and Puech J 2009 J. Phys. D: Appl. Phys. 42 205204
[15] Chang C, Huang H J, Liu G Z, Chen C H, Hou Q, Fang J Y, Zhu X X and Zhang Y P 2009 J. Appl. Phys. 105 123305
[16] Hockney R W and Eastwood J W 1981 Computer Simulation Using Particles (New York: McGraw-Hill)
[17] Eastwood J W 1991 Comput. Phys. Commun. 64 252
[18] Goplen B, Ludeking L, Smithe D and Warren G 1995 Comput. Phys. Commun. 87 54
[19] Liu G Z and Shao H 2003 Chin. Phys. 12 204
[20] Liu L, Li Y D, Wang R, Cui W Z and Liu C L 2013 Acta Phys. Sin. 62 025201 (in Chinese)
[21] Kossyi I A, Luk'yanchikov G S, Semenov V E, Zharova N A, Anderson D, Lisak M and Puech J 2010 J. Phys. D: Appl. Phys. 43 345206
[22] Semenov V E, Zharova N, Udiljak R, Anderson D, Lisak M and Puech J 2007 Phys. Plasmas 14 033509
[23] Li Y and Cui W Z 2012 Proc. 42nd European Microwave Conference, 29 October, 2012, Amsterdam, The Netherlands, p. 920
[24] Taflove A and Hagness S C 2000 Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd edn. (Norwood: Artech House)
[25] Yee K S 1966 IEEE Trans. Antennas Propag. 14 302
[26] Zhang H B, Hu X C, Wang R, Cao M, Zhang N and Cui W Z 2012 Rev. Sci. Instrum. 83 066105
[27] Pimpec F L, Kirby R E, King F and Pivi M 2005 Nucl. Instrum. Methods Phys. Res. A 551 187
[1] Asymmetric image encryption algorithm based ona new three-dimensional improved logistic chaotic map
Guo-Dong Ye(叶国栋), Hui-Shan Wu(吴惠山), Xiao-Ling Huang(黄小玲), and Syh-Yuan Tan. Chin. Phys. B, 2023, 32(3): 030504.
[2] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[3] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[4] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[5] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[6] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[7] Three-dimensional coupled-mode model and characteristics of low-frequency sound propagation in ocean waveguide with seamount topography
Ya-Xiao Mo(莫亚枭), Chao-Jin Zhang(张朝金), Li-Cheng Lu(鹿力成), and Sheng-Ming Guo(郭圣明). Chin. Phys. B, 2022, 31(8): 084301.
[8] Hyperparameter on-line learning of stochastic resonance based threshold networks
Weijin Li(李伟进), Yuhao Ren(任昱昊), and Fabing Duan(段法兵). Chin. Phys. B, 2022, 31(8): 080503.
[9] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[10] Effects of heterogeneous adoption thresholds on contact-limited social contagions
Dan-Dan Zhao(赵丹丹), Wang-Xin Peng(彭王鑫), Hao Peng(彭浩), and Wei Wang(王伟). Chin. Phys. B, 2022, 31(6): 068906.
[11] Generalization of the theory of three-dimensional quantum Hall effect of Fermi arcs in Weyl semimetal
Mingqi Chang(苌名起), Yunfeng Ge(葛云凤), and Li Sheng(盛利). Chin. Phys. B, 2022, 31(5): 057304.
[12] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
[13] Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer
Yangyang Ge(葛阳阳), Zhimin Wang(王治旻), Wen Zheng(郑文), Yu Zhang(张钰), Xiangmin Yu(喻祥敏), Renjie Kang(康人杰), Wei Xin(辛蔚), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shaoxiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2022, 31(4): 048704.
[14] Quantum watermarking based on threshold segmentation using quantum informational entropy
Jia Luo(罗佳), Ri-Gui Zhou(周日贵), Wen-Wen Hu(胡文文), YaoChong Li(李尧翀), and Gao-Feng Luo(罗高峰). Chin. Phys. B, 2022, 31(4): 040302.
[15] High efficiency, small size, and large bandwidth vertical interlayer waveguide coupler
Shao-Yang Li(李绍洋), Liang-Liang Wang(王亮亮), Dan Wu(吴丹), Jin You(游金), Yue Wang(王玥), Jia-Shun Zhang(张家顺), Xiao-Jie Yin(尹小杰), Jun-Ming An(安俊明), and Yuan-Da Wu(吴远大). Chin. Phys. B, 2022, 31(2): 024203.
No Suggested Reading articles found!