Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(5): 058502    DOI: 10.1088/1674-1056/25/5/058502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A novel circuit design for complementary resistive switch-based stateful logic operations

Xiao-Ping Wang(王小平)1,2, Lin Chen(陈林)1,2, Yi Shen(沈轶)1,2, Bo-Wen Xu(徐博文)1,2
1. School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China;
2. Research Institute of Huazhong University of Science and Technology in Shenzhen, Shenzhen 518000, China
Abstract  Recently, it has been demonstrated that memristors can be utilized as logic operations and memory elements. In this paper, we present a novel circuit design for complementary resistive switch (CRS)-based stateful logic operations. The proposed circuit can automatically write the destructive CRS cells back to the original states. In addition, the circuit can be used in massive passive crossbar arrays which can reduce sneak path current greatly. Moreover, the steps for CRS logic operations using our proposed circuit are reduced compared with previous circuit designs. We validate the effectiveness of our scheme through Hspice simulations on the logic circuits.
Keywords:  memristor      complementary resistive switch      crossbar arrays      logic circuits  
Received:  10 November 2015      Revised:  13 January 2016      Accepted manuscript online: 
PACS:  85.35.-p (Nanoelectronic devices)  
  85.25.Hv (Superconducting logic elements and memory devices; microelectronic circuits)  
  87.85.Qr (Nanotechnologies-design)  
  84.32.-y (Passive circuit components)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61374150 and 11271146), the State Key Program of the National Natural Science Foundation of China (Grant No. 61134012), the Doctoral Fund of Ministry of Education of China (Grant No. 20130142130012), and the Science and Technology Program of Shenzhen City, China (Grant No. JCYJ20140509162710496).
Corresponding Authors:  Xiao-Ping Wang     E-mail:  wangxiaoping@hust.edu.cn

Cite this article: 

Xiao-Ping Wang(王小平), Lin Chen(陈林), Yi Shen(沈轶), Bo-Wen Xu(徐博文) A novel circuit design for complementary resistive switch-based stateful logic operations 2016 Chin. Phys. B 25 058502

[1] Kuhn K J 2012 IEEE Trans. Electron Device 59 1813
[2] Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[3] Strukov D B, Snider G S, Stewart G R and Williams R S 2008 Nature 453 80
[4] Fan X, Chen H P, Wang Q, Wang Y Q, Lv S L, Liu Y, Song Z T, Feng G M and Liu B 2015 Chin. Phys. Lett. 6 068301
[5] Tang S Y, Li R, Ou X, Xu H N, Xia Y D, Yin J and Liu Z G 2014 Chin. Phys. Lett. 7 078503
[6] Shin S, Kim K and Kang S M 2011 IEEE Trans. Nanotechnol. 10 266
[7] Pershin Y V and Ventra M D 2010 IEEE Trans. Circuits Syst. I 57 1857
[8] Tian X B and Xu H 2013 Chin. Phys. B 22 088501
[9] Li Z J and Zeng Y C 2013 Chin. Phys. B 22 040502
[10] Yuan F, Wang G Y and Wang X Y 2015 Chin. Phys. B 24 60506
[11] Buscarino A, Fortuna L, Frasca M and Gambuzza L V 2012 An Interdisciplinary Journal of Nonlinear Science 22 023136
[12] Pershin Y V and Ventra M D 2010 Neural Netw. 23 881
[13] Borghetti J, Snider G S, Kuekes P J, Yang J J, Stewart D R and Williams R S 2010 Nature 464 873
[14] Shin S, Kim K and Kang S M 2011 IEEE Trans. Circuits Syst. II 58 442
[15] Yang Y, Mathew J, Pradhan D K, Ottavi M and Pontarelli S 2014 Design, Automation and Test in Europe Conference and Exhibition, pp. 1-4
[16] Zhu X, Yang X, Wu C, Xiao N, Wu J and Yi X 2013 IEEE Trans. Circuits Syst. II 60 682
[17] Kvatinsky S, Satat G, Wald N, Friedman E G, Kolodny A and Weiser U C 2014 IEEE Trans. Very Large Scale Integr. Syst. (VLSI) 22 2054
[18] Linn E, Rosezin R, Tappertzhofen S, Bottger U and Waser R 2012 Nanotechnology 23 305205
[19] Xia Q, Robinett, Cumbie M W, Banerjee N, Cardinali T J, Yang J J, Wu W, Li X, Tong W M and Strukov D B 2009 Nano Lett. 9 3640
[20] Ho Y, Huang G M and Li P 2010 IEEE Trans. Circuits Syst. I 58 724
[21] Jung C M, Choi J M and Min K S 2012 IEEE Trans. Nanotechnol. 11 611
[22] Zidan M A, Eltawil A M, Kurdahi F, Fahmy H and Salama K N 2014 IEEE Trans. Nanotechnol. 13 274
[23] Zidan M A, Omran H, Sultan A, Fahmy H and Salama K N 2015 IEEE Trans. Nanotechnol. 14 3
[24] Linn E, Rosezin R, Kugeler C and Waser R 2010 Nat. Mater. 9 403
[1] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[2] Memristor's characteristics: From non-ideal to ideal
Fan Sun(孙帆), Jing Su(粟静), Jie Li(李杰), Shukai Duan(段书凯), and Xiaofang Hu(胡小方). Chin. Phys. B, 2023, 32(2): 028401.
[3] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[4] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
[5] High throughput N-modular redundancy for error correction design of memristive stateful logic
Xi Zhu(朱熙), Hui Xu(徐晖), Weiping Yang(杨为平), Zhiwei Li(李智炜), Haijun Liu(刘海军), Sen Liu(刘森), Yinan Wang(王义楠), and Hongchang Long(龙泓昌). Chin. Phys. B, 2023, 32(1): 018502.
[6] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[7] Fabrication and investigation of ferroelectric memristors with various synaptic plasticities
Qi Qin(秦琦), Miaocheng Zhang(张缪城), Suhao Yao(姚苏昊), Xingyu Chen(陈星宇), Aoze Han(韩翱泽),Ziyang Chen(陈子洋), Chenxi Ma(马晨曦), Min Wang(王敏), Xintong Chen(陈昕彤), Yu Wang(王宇),Qiangqiang Zhang(张强强), Xiaoyan Liu(刘晓燕), Ertao Hu(胡二涛), Lei Wang(王磊), and Yi Tong(童祎). Chin. Phys. B, 2022, 31(7): 078502.
[8] Pulse coding off-chip learning algorithm for memristive artificial neural network
Ming-Jian Guo(郭明健), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2022, 31(7): 078702.
[9] Design and FPGA implementation of a memristor-based multi-scroll hyperchaotic system
Sheng-Hao Jia(贾生浩), Yu-Xia Li(李玉霞), Qing-Yu Shi(石擎宇), and Xia Huang(黄霞). Chin. Phys. B, 2022, 31(7): 070505.
[10] A mathematical analysis: From memristor to fracmemristor
Wu-Yang Zhu(朱伍洋), Yi-Fei Pu(蒲亦非), Bo Liu(刘博), Bo Yu(余波), and Ji-Liu Zhou(周激流). Chin. Phys. B, 2022, 31(6): 060204.
[11] The dynamics of a memristor-based Rulkov neuron with fractional-order difference
Yan-Mei Lu(卢艳梅), Chun-Hua Wang(王春华), Quan-Li Deng(邓全利), and Cong Xu(徐聪). Chin. Phys. B, 2022, 31(6): 060502.
[12] Memristor-based multi-synaptic spiking neuron circuit for spiking neural network
Wenwu Jiang(蒋文武), Jie Li(李杰), Hongbo Liu(刘洪波), Xicong Qian(钱曦聪), Yuan Ge(葛源), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(4): 040702.
[13] Complex dynamic behaviors in hyperbolic-type memristor-based cellular neural network
Ai-Xue Qi(齐爱学), Bin-Da Zhu(朱斌达), and Guang-Yi Wang(王光义). Chin. Phys. B, 2022, 31(2): 020502.
[14] A novel hyperchaotic map with sine chaotification and discrete memristor
Qiankun Sun(孙乾坤), Shaobo He(贺少波), Kehui Sun(孙克辉), and Huihai Wang(王会海). Chin. Phys. B, 2022, 31(12): 120501.
[15] A spintronic memristive circuit on the optimized RBF-MLP neural network
Yuan Ge(葛源), Jie Li(李杰), Wenwu Jiang(蒋文武), Lidan Wang(王丽丹), and Shukai Duan(段书凯). Chin. Phys. B, 2022, 31(11): 110702.
No Suggested Reading articles found!