Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(3): 037803    DOI: 10.1088/1674-1056/27/3/037803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Influence of fluorescence time characteristics on the spatial resolution of CW-stimulated emission depletion microscopy

Haiyun Qin(秦海芸)1, Wei Zhao(赵伟)1, Chen Zhang(张琛)1, Yong Liu(刘勇)2, Guiren Wang(王归仁)3, Kaige Wang(王凯歌)1
1 Institute of Photonics and Photon-Technology, Northwest University, Xi'an 710069, China;
2 School of Electronics and Information Engineering, Shanghai University of Electric Power, Shanghai 200090, China;
3 Mechanical Engineering Department & Biomedical Engineering Program, University of South Carolina, Columbia, SC 29208, USA
Abstract  As one of the most important realizations of stimulated emission depletion (STED) microscopy, the continuous-wave (CW) STED system, constructed by using CW lasers as the excitation and STED beams, has been investigated and developed for nearly a decade. However, a theoretical model of the suppression factors in CW STED has not been well established. In this investigation, the factors that affect the spatial resolution of a CW STED system are theoretically and numerically studied. The full-width-at-half-maximum (FWHM) of a CW STED with a doughnut-shaped STED beam is also reanalyzed. It is found that the suppression function is dominated by the ratio of the local STED and excitation beam intensities. In addition, the FWHM is highly sensitive to both the fluorescence rate (inverse of fluoresce lifetime) and the quenching rate, but insensitive to the rate of vibrational relaxation. For comparison, the suppression function in picosecond STED is only determined by the distribution of the STED beam intensity scaled with the saturation intensity. Our model is highly consistent with published experimental data for evaluating the spatial resolution. This investigation is important in guiding the development of new CW STED systems.
Keywords:  stimulated emission depletion      continuous-wave laser      suppression function      numerical simulation  
Received:  13 November 2017      Revised:  13 December 2017      Accepted manuscript online: 
PACS:  78.45.+h (Stimulated emission)  
  78.55.-m (Photoluminescence, properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11672229 and 61378083), International Cooperation Foundation of the National Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2011DFA12220), Major Research Plan of the National Natural Science Foundation of China (Grant No. 91123030), Natural Science Foundation of Shaanxi Province of China (Grant Nos. 2010JS110 and 2013SZS03-Z01), Natural Science Basic Research Program of Shaanxi Province - Major Basic Research Project, China (Grant No. 2016ZDJC-15), Young Scientist Fund of the National Natural Science Foundation of China (Grant No. 11504294), and the Youth Talent Plan of the Natural Science Foundation of Shaanxi Province of China (Grant No. 2016JQ103).{These authors contributed equally to this work.
Corresponding Authors:  Kaige Wang     E-mail:  wangkg@nwu.edu.cn

Cite this article: 

Haiyun Qin(秦海芸), Wei Zhao(赵伟), Chen Zhang(张琛), Yong Liu(刘勇), Guiren Wang(王归仁), Kaige Wang(王凯歌) Influence of fluorescence time characteristics on the spatial resolution of CW-stimulated emission depletion microscopy 2018 Chin. Phys. B 27 037803

[1] Klar T A and Hell S W 1999 Opt. Lett. 24 954
[2] Hell S W and Wichmann J 1994 Opt. Lett. 19 780
[3] Hell S W, Sahl S J, Bates M, Zhuang X, Heintzmann R, Booth M J, Bewersdorf J, Shtengel G, Hess H, Tinnefeld P, Honigmann A, Jakobs S, Testa I, Cognet L, Lounis B, Ewers H, Davis S J, Eggeling C, Klenerman D, Willig K I, Vicidomini G, Castello M, Diaspro A and Cordes T 2015 J. Phys. D:Appl. Phys. 48 443001
[4] Sydor A M, Czymmek K J, Puchner E M and Mennella V 2015 Trends in Cell Biology 25 730
[5] Moneron G, Medda R, Hein B, Giske A, Westphal V and Hell S W 2010 Opt. Express 18 1302
[6] Kuang C, Zhao W and Wang G 2010 Review of Scientific Instruments 81 053709
[7] Neupane B, Chen F, Sun W and Chiu D T 2013 Review of Scientific Instruments 84 043701
[8] Fang Y, Wang Y, Kuang C and Liu X 2014 Opt. Commun. 322 169
[9] Willig K I, Harke B, Medda R and Hell S W 2007 Nature Methods 4 915
[10] Harke B, Keller J, Ullal C K, Westphal V, Sch A and Hell S W 2008 Opt. Express 16 4154
[11] Richards B and Wolf E 1959 Proceedings of the Royal Society of London 253 358
[12] Davidson N and Bokor N 2004 Opt. Lett. 29 1318
[13] Hein B, Willig K I and Hell S W 2008 Proc. Natl. Acad. Sci. USA 105 14271
[14] Hotta J I, Fron E, Dedecker P, Janssen K P, Li C, Müllen K, Harke B, Bückers J, Hell S W and Hofkens J 2010 J. Am. Chem. Soc. 132 5021
[15] Heikal A A, Hess S T, Baird G S, Tsien R Y and Webb W W 2000 Proc. Natl. Acad. Sci. USA 97 11996
[16] Braeken E, Cremer G D, Marsal P, Pépe G, Müllen K and Vallée R A L 2009 J. Am. Chem. Soc. 131 12201
[17] Luo D, Kuang C, Liu X and Wang G 2013 Optics & Laser Technology 45 723
[18] Lakowicz J R 2006 Principles of Fluorescence Spectroscopy (3rd Edn.) (New York:Springer)
[19] Westphal V and Hell S W 2005 Phys. Rev. Lett. 94 143903
[20] Fila M and Hulshof J 1991 Proceedings of the American Mathematical Society 112 473
[1] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[2] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[3] Micro-mechanism study of the effect of Cd-free buffer layers ZnXO (X=Mg/Sn) on the performance of flexible Cu2ZnSn(S, Se)4 solar cell
Caixia Zhang(张彩霞), Yaling Li(李雅玲), Beibei Lin(林蓓蓓), Jianlong Tang(唐建龙), Quanzhen Sun(孙全震), Weihao Xie(谢暐昊), Hui Deng(邓辉), Qiao Zheng(郑巧), and Shuying Cheng(程树英). Chin. Phys. B, 2023, 32(2): 028801.
[4] Theoretical and experimental studies on high-power laser-induced thermal blooming effect in chamber with different gases
Xiangyizheng Wu(吴祥议政), Jian Xu(徐健), Keling Gong(龚柯菱), Chongfeng Shao(邵崇峰), Yang Kou(寇洋), Yuxuan Zhang(张宇轩), Yong Bo(薄勇), and Qinjun Peng(彭钦军). Chin. Phys. B, 2022, 31(8): 086105.
[5] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[6] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[7] Characteristics of secondary electron emission from few layer graphene on silicon (111) surface
Guo-Bao Feng(封国宝), Yun Li(李韵), Xiao-Jun Li(李小军), Gui-Bai Xie(谢贵柏), and Lu Liu(刘璐). Chin. Phys. B, 2022, 31(10): 107901.
[8] Effects of Prandtl number in two-dimensional turbulent convection
Jian-Chao He(何建超), Ming-Wei Fang(方明卫), Zhen-Yuan Gao(高振源), Shi-Di Huang(黄仕迪), and Yun Bao(包芸). Chin. Phys. B, 2021, 30(9): 094701.
[9] Evolution of melt convection in a liquid metal driven by a pulsed electric current
Yanyi Xu(徐燕祎), Yunhu Zhang(张云虎), Tianqing Zheng(郑天晴), Yongyong Gong(龚永勇), Changjiang Song(宋长江), Hongxing Zheng(郑红星), and Qijie Zhai(翟启杰). Chin. Phys. B, 2021, 30(8): 084701.
[10] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[11] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[12] Asymmetric coherent rainbows induced by liquid convection
Tingting Shi(施婷婷), Xuan Qian(钱轩), Tianjiao Sun(孙天娇), Li Cheng(程力), Runjiang Dou(窦润江), Liyuan Liu(刘力源), and Yang Ji(姬扬). Chin. Phys. B, 2021, 30(12): 124208.
[13] Numerical simulation of chorus-driving acceleration of relativistic electrons at extremely low L-shell during geomagnetic storms
Zhen-Xia Zhang(张振霞), Ruo-Xian Zhou(周若贤), Man Hua(花漫), Xin-Qiao Li(李新乔), Bin-Bin Ni(倪彬彬), and Ju-Tao Yang(杨巨涛). Chin. Phys. B, 2021, 30(10): 109401.
[14] CO2 emission control in new CM car-following model with feedback control of the optimal estimation of velocity difference under V2X environment
Guang-Han Peng(彭光含), Rui Tang(汤瑞), Hua Kuang(邝华), Hui-Li Tan(谭惠丽), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 108901.
[15] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
No Suggested Reading articles found!