Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 027805    DOI: 10.1088/1674-1056/27/2/027805
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes

Meng Du(杜萌)1,2, Xing-Zhong Cao(曹兴忠)2, Rui Xia(夏锐)2, Zhong-Po Zhou(周忠坡)1, Shuo-Xue Jin(靳硕学)2, Bao-Yi Wang(王宝义)2
1. Henan Key Laboratory of Photovoltaic Materials, College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China;
2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The CS/PVA/Fe3O4 nanocomposite membranes with chainlike arrangement of Fe3O4 nanoparticles are prepared by a magnetic-field-assisted solution casting method. The aim of this work is to investigate the relationship between the microstructure of the magnetic anisotropic CS/PVA/Fe3O4 membrane and the evolved macroscopic physicochemical property. With the same doping content, the relative crystallinity of CS/PVA/Fe3O4-M is lower than that of CS/PVA/Fe3O4. The Fourier transform infrared spectroscopy (FT-TR) measurements indicate that there is no chemical bonding between polymer molecule and Fe3O4 nanoparticle. The Fe3O4 nanoparticles in CS/PVA/Fe3O4 and CS/PVA/Fe3O4-M are wrapped by the chains of CS/PVA, which is also confirmed by scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis. The saturation magnetization value of CS/PVA/Fe3O4-M obviously increases compared with that of non-magnetic aligned membrane, meanwhile the transmittance decreases in the UV-visible region. The o-Ps lifetime distribution provides information about the free-volume nanoholes present in the amorphous region. It is suggested that the microstructure of CS/PVA/Fe3O4 membrane can be modified in its curing process under a magnetic field, which could affect the magnetic properties and the transmittance of nanocomposite membrane. In brief, a full understanding of the relationship between the microstructure and the macroscopic property of CS/PVA/Fe3O4 nanocomposite plays a vital role in exploring and designing the novel multifunctional materials.

Keywords:  microstructure      CS/PVA/Fe3O4 membrane      positron annihilation      magnetic properties  
Received:  27 September 2017      Revised:  15 November 2017      Accepted manuscript online: 
PACS:  78.70.Bj (Positron annihilation)  
  61.05.-a (Techniques for structure determination)  
  81.07.Pr (Organic-inorganic hybrid nanostructures)  
  82.35.Np (Nanoparticles in polymers)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11475197, 11575205, 11404100, and 11304083) and the Key Scientific and Technological Project of Henan Province, China (Grant No. 102102210186).

Corresponding Authors:  Xing-Zhong Cao, Zhong-Po Zhou     E-mail:  caoxzh@ihep.ac.cn;zpzhou@htu.edu.cn
About author:  78.70.Bj; 61.05.-a; 81.07.Pr; 82.35.Np

Cite this article: 

Meng Du(杜萌), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Zhong-Po Zhou(周忠坡), Shuo-Xue Jin(靳硕学), Bao-Yi Wang(王宝义) Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes 2018 Chin. Phys. B 27 027805

[1] Zhang J, Wang J F, Lin T, Wang C H, Ghorbani K, Fang J and Wang X G 2014 Chem. Eng. J. 237 462
[2] Cai N, Li C, Han C, Luo X G, Shen L, Xue Y N and Yu F Q 2016 Appl. Surf. Sci. 369 492
[3] López-de-Dicastillo C, Jordá M, Catalá R, Gavara R and Hernández-Muñoz P 2011 J. Agric. Food Chem. 59 11026
[4] Popescu R C, Fufã M O M, Grumezescu A M and Holban A M 2017 Academic Press 2017 421
[5] Jalvandi J, White M, Gao Y, Truong Y B, Padhye R and Kyratzis I L 2017 Mater. Sci. Eng. C 73 440
[6] Fulco A P P, Melo J D D, Paskocimas C A, de Medeiros S N, de Araujo Machado F L and Rodrigues A R 2016 NDT & E Int. 77 42
[7] Thévenot J, Oliveira H, Sandre O and Lecommandoux S 2013 Chem. Soc. Rev. 42 7099
[8] Steinert B W and Dean D R 2009 Polymer 50 898
[9] Lin Z Y, Liu Y, Raghavan S, Moon K S, Sitaraman S K and Wong C P 2013 ACS Appl. Mater. & Interfaces 5 7633
[10] Takahashi H, Nagao D, Watanabe K, Ishii H and Konno M 2015 Langmuir 31 5590
[11] Wang Q, Dai J F, Li W X, Wei Z Q and Jiang J L 2008 Composites Sci. Technol. 68 1644
[12] Teja A S and Koh P Y 2009 Progress in crystal growth and characterization of materials 55 22
[13] Ren P G, Wang H, Yan D X, Huang H D, Wang H B, Zhang Z P, Xu L and Li Z M 2017 Appl. Sci. Manuf. 97 1
[14] Huang Z Q, Zheng F, Zhang Z, Xu H T and Zhou K M 2012 Desalination 292 64
[15] Wang H and Zhou S 2016 Biomater. Sci. 4 1062
[16] Rinaudo M 2006 Prog. Polymer Sci. 31 603
[17] Lee K Y and Mooney D J 2001 Chem. Rev. 101 1869
[18] Xing R S, Wu H, Zhao C H, Gomaa H, Zhao J, Pan F S and Jiang Z Y 2016 Chem. Eng. & Technol. 39 969
[19] Brijmohan S B and Shaw M T 2007 J. Membrane Sci. 303 64
[20] Tang Y, Chen Q W and Chen R S 2015 Appl. Surf. Sci. 347 202
[21] Huang Z Q, Chen L, Chen K, Zhang Z and Xu H T 2010 J. Appl. Polymer Sci. 117 1960
[22] Liang J J, Huang Y, Zhang L, Wang Y, Ma Y F, Guo T Y and Chen Y S 2009 Adv. Funct. Mater. 19 2297
[23] Jia Y T, Gong J, Gu X H, Kim H Y, Dong J and Shen X Y 2007 Carbohydrate Polymers 67 403
[24] Yan W, Xue H Z, Yu S, Bing H, Xiao Y H, Xin Z W, Yuan H L and Xu L D 2011 Biomed. Mater. 6 055008
[25] Ashjari M, Mahdavian AR, Ebrahimi NG and Mosleh Y 2010 J. Inorganic and Organometallic Polymers and Materials 20 213
[26] Joshi U A, Sharma S C and Harsha S 2012 Composites Part B:Eng. 43 2063
[27] Sharma S K, Sudarshan K and Pujari P K 2016 Phys. Chem. Chem. Phys. 18 25434
[28] Wang S F, Wu Y Z, Zhang N, He G W, Xin Q P, Wu X Y, Wu H, Cao X Z, Guiver MD and Jiang Z Y 2016 Energy Environ. Sci. 9 3107
[29] Zhao J, Zhu Y W, He G W, Xing R S, Pan F S, Jiang Z Y, Zhang P, Cao X Z and Wang B Y 2016 ACS Appl. Mater. Interfaces 8 2097
[30] Xia R, Cao X Z, Gao M Z, Zhang P, Zeng M F, Wang B Y and Wei L 2017 Phys. Chem. Chem. Phys. 19 3616
[31] Sharma SK, Bahadur J, Patil PN, Maheshwari P, Mukherjee S, Sudarshan K, Mazumder S and Pujari PK 2013 ChemPhysChem 14 1055
[32] Gong Z L, Gong J, Yan X L, Gao S and Wang B 2011 J. Phys. Chem. C 115 18468
[33] Deng H, Li X L, Peng Q, Wang X, Chen J P and Li Y D 2005 Angewandte Chemie 18 2842
[34] Nagel C, Günther-Schade K, Fritsch D, Strunskus T and Faupel F 2002 Macromolecules 35 2071
[35] Eldrup M, Lightbody D and Sherwood J N 1981 Chem. Phys. 63 51
[36] Sharma S K, Prakash J, Sudarshan K, Maheshwari P, Sathiyamoorthy D and Pujari P K 2012 Phys. Chem. Chem. Phys.:PCCP 14 10972
[37] Choo K, Ching Y C, Chuah C H, Julai S and Liou N S 2016 Materials 9 644
[38] Boonsongrit Y, Mueller BW and Mitrevej A 2008 Eur. J. Pharm. Biopharm. 69 388
[39] Vicentini D S, Smania A and Laranjeira M C M 2010 Mater. Sci. Eng. C-Mater. 30 503
[40] Costa-Júnior E S, Barbosa-Stancioli E F, Mansur A A, Vasconcelos W L and Mansur HS 2009 Carbohydrate Polymers 76 472
[41] Zheng H, Du Y M, Yu J H, Huang R H and Zhang L N 2001 J. Appl. Polymer Sci. 80 2558
[42] Zhang Q S, Peng B, Li D, Yang Y and Liu Y L 2014 IEEE Photon. Technol. Lett. 26 2181
[43] Niu H L, Chen Q W, Ning M, Jia Y S and Wang X J 2004 J. Phys. Chem. B 108 3996
[44] Wang J, Chen Q, Zeng C and Hou B 2004 Adv. Mater. 16 137
[45] Wang J, Wu Y J and Zhu Y J 2007 Mater. Chem. Phys. 106 1
[1] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[4] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[5] Two-dimensional Sb cluster superlattice on Si substrate fabricated by a two-step method
Runxiao Zhang(张润潇), Zi Liu(刘姿), Xin Hu(胡昕), Kun Xie(谢鹍), Xinyue Li(李新月), Yumin Xia(夏玉敏), and Shengyong Qin(秦胜勇). Chin. Phys. B, 2022, 31(8): 086801.
[6] Preparation of PSFO and LPSFO nanofibers by electrospinning and their electronic transport and magnetic properties
Ying Su(苏影), Dong-Yang Zhu(朱东阳), Ting-Ting Zhang(张亭亭), Yu-Rui Zhang(张玉瑞), Wen-Peng Han(韩文鹏), Jun Zhang(张俊), Seeram Ramakrishna, and Yun-Ze Long(龙云泽). Chin. Phys. B, 2022, 31(5): 057305.
[7] Enhancement of magnetic and dielectric properties of low temperature sintered NiCuZn ferrite by Bi2O3-CuO additives
Jie Li(李颉), Bing Lu(卢冰), Ying Zhang(张颖), Jian Wu(武剑), Yan Yang(杨燕), Xue-Ning Han(韩雪宁), Dan-Dan Wen(文丹丹), Zheng Liang(梁峥), and Huai-Wu Zhang(张怀武). Chin. Phys. B, 2022, 31(4): 047502.
[8] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[9] A review on 3d transition metal dilute magnetic REIn3 intermetallic compounds
Xin-Peng Guo(郭新鹏), Yong-Quan Guo(郭永权), Lin-Han Yin(殷林瀚), and Qiang He(何强). Chin. Phys. B, 2022, 31(3): 037501.
[10] Tailoring the optical and magnetic properties of La-BaM hexaferrites by Ni substitution
Hafiz T. Ali, M. Ramzan, M Imran Arshad, Nicola A. Morley, M. Hassan Abbas, Mohammad Yusuf, Atta Ur Rehman, Khalid Mahmood, Adnan Ali, Nasir Amin, and M. Ajaz-un-Nabi. Chin. Phys. B, 2022, 31(2): 027502.
[11] Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting [Pt/Co/Ta]10 multilayer
Zhen-Dong Chen(陈振东), Mei-Yang Ma(马眉扬), Sen-Fu Zhang(张森富), Mang-Yuan Ma(马莽原), Zi-Zhao Pan(潘咨兆), Xi-Xiang Zhang(张西祥), Xue-Zhong Ruan(阮学忠), Yong-Bing Xu(徐永兵), and Fu-Sheng Ma(马付胜). Chin. Phys. B, 2022, 31(11): 117501.
[12] Structural, magnetic, and dielectric properties of Ni-Zn ferrite and Bi2O3 nanocomposites prepared by the sol-gel method
Jinmiao Han(韩晋苗), Li Sun(孙礼), Ensi Cao(曹恩思), Wentao Hao(郝文涛), Yongjia Zhang(张雍家), and Lin Ju(鞠林). Chin. Phys. B, 2021, 30(9): 096102.
[13] Thermoelectric enhancement in triple-doped strontium titanate with multi-scale microstructure
Zheng Cao(曹正), Qing-Qiao Fu(傅晴俏), Hui Gu(顾辉), Zhen Tian(田震), Xinba Yaer(新巴雅尔), Juan-Juan Xing(邢娟娟), Lei Miao(苗蕾), Xiao-Huan Wang(王晓欢), Hui-Min Liu(刘慧敏), and Jun Wang(王俊). Chin. Phys. B, 2021, 30(9): 097204.
[14] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[15] Microstructure and magnetocaloric properties in melt-spun and high-pressure hydrogenated La0.5Pr0.5Fe11.4Si1.6 ribbons
Qian Liu(刘倩), Min Tong(佟敏), Xin-Guo Zhao(赵新国), Nai-Kun Sun(孙乃坤), Xiao-Fei Xiao(肖小飞), Jie Guo(郭杰), Wei Liu(刘伟), and Zhi-Dong Zhang(张志东). Chin. Phys. B, 2021, 30(8): 087502.
No Suggested Reading articles found!