CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes |
Meng Du(杜萌)1,2, Xing-Zhong Cao(曹兴忠)2, Rui Xia(夏锐)2, Zhong-Po Zhou(周忠坡)1, Shuo-Xue Jin(靳硕学)2, Bao-Yi Wang(王宝义)2 |
1. Henan Key Laboratory of Photovoltaic Materials, College of Physics and Materials Science, Henan Normal University, Xinxiang 453007, China;
2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract The CS/PVA/Fe3O4 nanocomposite membranes with chainlike arrangement of Fe3O4 nanoparticles are prepared by a magnetic-field-assisted solution casting method. The aim of this work is to investigate the relationship between the microstructure of the magnetic anisotropic CS/PVA/Fe3O4 membrane and the evolved macroscopic physicochemical property. With the same doping content, the relative crystallinity of CS/PVA/Fe3O4-M is lower than that of CS/PVA/Fe3O4. The Fourier transform infrared spectroscopy (FT-TR) measurements indicate that there is no chemical bonding between polymer molecule and Fe3O4 nanoparticle. The Fe3O4 nanoparticles in CS/PVA/Fe3O4 and CS/PVA/Fe3O4-M are wrapped by the chains of CS/PVA, which is also confirmed by scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis. The saturation magnetization value of CS/PVA/Fe3O4-M obviously increases compared with that of non-magnetic aligned membrane, meanwhile the transmittance decreases in the UV-visible region. The o-Ps lifetime distribution provides information about the free-volume nanoholes present in the amorphous region. It is suggested that the microstructure of CS/PVA/Fe3O4 membrane can be modified in its curing process under a magnetic field, which could affect the magnetic properties and the transmittance of nanocomposite membrane. In brief, a full understanding of the relationship between the microstructure and the macroscopic property of CS/PVA/Fe3O4 nanocomposite plays a vital role in exploring and designing the novel multifunctional materials.
|
Received: 27 September 2017
Revised: 15 November 2017
Accepted manuscript online:
|
PACS:
|
78.70.Bj
|
(Positron annihilation)
|
|
61.05.-a
|
(Techniques for structure determination)
|
|
81.07.Pr
|
(Organic-inorganic hybrid nanostructures)
|
|
82.35.Np
|
(Nanoparticles in polymers)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11475197, 11575205, 11404100, and 11304083) and the Key Scientific and Technological Project of Henan Province, China (Grant No. 102102210186). |
Corresponding Authors:
Xing-Zhong Cao, Zhong-Po Zhou
E-mail: caoxzh@ihep.ac.cn;zpzhou@htu.edu.cn
|
About author: 78.70.Bj; 61.05.-a; 81.07.Pr; 82.35.Np |
Cite this article:
Meng Du(杜萌), Xing-Zhong Cao(曹兴忠), Rui Xia(夏锐), Zhong-Po Zhou(周忠坡), Shuo-Xue Jin(靳硕学), Bao-Yi Wang(王宝义) Magnetic field aligned orderly arrangement of Fe3O4 nanoparticles in CS/PVA/Fe3O4 membranes 2018 Chin. Phys. B 27 027805
|
[1] |
Zhang J, Wang J F, Lin T, Wang C H, Ghorbani K, Fang J and Wang X G 2014 Chem. Eng. J. 237 462
|
[2] |
Cai N, Li C, Han C, Luo X G, Shen L, Xue Y N and Yu F Q 2016 Appl. Surf. Sci. 369 492
|
[3] |
López-de-Dicastillo C, Jordá M, Catalá R, Gavara R and Hernández-Muñoz P 2011 J. Agric. Food Chem. 59 11026
|
[4] |
Popescu R C, Fufã M O M, Grumezescu A M and Holban A M 2017 Academic Press 2017 421
|
[5] |
Jalvandi J, White M, Gao Y, Truong Y B, Padhye R and Kyratzis I L 2017 Mater. Sci. Eng. C 73 440
|
[6] |
Fulco A P P, Melo J D D, Paskocimas C A, de Medeiros S N, de Araujo Machado F L and Rodrigues A R 2016 NDT & E Int. 77 42
|
[7] |
Thévenot J, Oliveira H, Sandre O and Lecommandoux S 2013 Chem. Soc. Rev. 42 7099
|
[8] |
Steinert B W and Dean D R 2009 Polymer 50 898
|
[9] |
Lin Z Y, Liu Y, Raghavan S, Moon K S, Sitaraman S K and Wong C P 2013 ACS Appl. Mater. & Interfaces 5 7633
|
[10] |
Takahashi H, Nagao D, Watanabe K, Ishii H and Konno M 2015 Langmuir 31 5590
|
[11] |
Wang Q, Dai J F, Li W X, Wei Z Q and Jiang J L 2008 Composites Sci. Technol. 68 1644
|
[12] |
Teja A S and Koh P Y 2009 Progress in crystal growth and characterization of materials 55 22
|
[13] |
Ren P G, Wang H, Yan D X, Huang H D, Wang H B, Zhang Z P, Xu L and Li Z M 2017 Appl. Sci. Manuf. 97 1
|
[14] |
Huang Z Q, Zheng F, Zhang Z, Xu H T and Zhou K M 2012 Desalination 292 64
|
[15] |
Wang H and Zhou S 2016 Biomater. Sci. 4 1062
|
[16] |
Rinaudo M 2006 Prog. Polymer Sci. 31 603
|
[17] |
Lee K Y and Mooney D J 2001 Chem. Rev. 101 1869
|
[18] |
Xing R S, Wu H, Zhao C H, Gomaa H, Zhao J, Pan F S and Jiang Z Y 2016 Chem. Eng. & Technol. 39 969
|
[19] |
Brijmohan S B and Shaw M T 2007 J. Membrane Sci. 303 64
|
[20] |
Tang Y, Chen Q W and Chen R S 2015 Appl. Surf. Sci. 347 202
|
[21] |
Huang Z Q, Chen L, Chen K, Zhang Z and Xu H T 2010 J. Appl. Polymer Sci. 117 1960
|
[22] |
Liang J J, Huang Y, Zhang L, Wang Y, Ma Y F, Guo T Y and Chen Y S 2009 Adv. Funct. Mater. 19 2297
|
[23] |
Jia Y T, Gong J, Gu X H, Kim H Y, Dong J and Shen X Y 2007 Carbohydrate Polymers 67 403
|
[24] |
Yan W, Xue H Z, Yu S, Bing H, Xiao Y H, Xin Z W, Yuan H L and Xu L D 2011 Biomed. Mater. 6 055008
|
[25] |
Ashjari M, Mahdavian AR, Ebrahimi NG and Mosleh Y 2010 J. Inorganic and Organometallic Polymers and Materials 20 213
|
[26] |
Joshi U A, Sharma S C and Harsha S 2012 Composites Part B:Eng. 43 2063
|
[27] |
Sharma S K, Sudarshan K and Pujari P K 2016 Phys. Chem. Chem. Phys. 18 25434
|
[28] |
Wang S F, Wu Y Z, Zhang N, He G W, Xin Q P, Wu X Y, Wu H, Cao X Z, Guiver MD and Jiang Z Y 2016 Energy Environ. Sci. 9 3107
|
[29] |
Zhao J, Zhu Y W, He G W, Xing R S, Pan F S, Jiang Z Y, Zhang P, Cao X Z and Wang B Y 2016 ACS Appl. Mater. Interfaces 8 2097
|
[30] |
Xia R, Cao X Z, Gao M Z, Zhang P, Zeng M F, Wang B Y and Wei L 2017 Phys. Chem. Chem. Phys. 19 3616
|
[31] |
Sharma SK, Bahadur J, Patil PN, Maheshwari P, Mukherjee S, Sudarshan K, Mazumder S and Pujari PK 2013 ChemPhysChem 14 1055
|
[32] |
Gong Z L, Gong J, Yan X L, Gao S and Wang B 2011 J. Phys. Chem. C 115 18468
|
[33] |
Deng H, Li X L, Peng Q, Wang X, Chen J P and Li Y D 2005 Angewandte Chemie 18 2842
|
[34] |
Nagel C, Günther-Schade K, Fritsch D, Strunskus T and Faupel F 2002 Macromolecules 35 2071
|
[35] |
Eldrup M, Lightbody D and Sherwood J N 1981 Chem. Phys. 63 51
|
[36] |
Sharma S K, Prakash J, Sudarshan K, Maheshwari P, Sathiyamoorthy D and Pujari P K 2012 Phys. Chem. Chem. Phys.:PCCP 14 10972
|
[37] |
Choo K, Ching Y C, Chuah C H, Julai S and Liou N S 2016 Materials 9 644
|
[38] |
Boonsongrit Y, Mueller BW and Mitrevej A 2008 Eur. J. Pharm. Biopharm. 69 388
|
[39] |
Vicentini D S, Smania A and Laranjeira M C M 2010 Mater. Sci. Eng. C-Mater. 30 503
|
[40] |
Costa-Júnior E S, Barbosa-Stancioli E F, Mansur A A, Vasconcelos W L and Mansur HS 2009 Carbohydrate Polymers 76 472
|
[41] |
Zheng H, Du Y M, Yu J H, Huang R H and Zhang L N 2001 J. Appl. Polymer Sci. 80 2558
|
[42] |
Zhang Q S, Peng B, Li D, Yang Y and Liu Y L 2014 IEEE Photon. Technol. Lett. 26 2181
|
[43] |
Niu H L, Chen Q W, Ning M, Jia Y S and Wang X J 2004 J. Phys. Chem. B 108 3996
|
[44] |
Wang J, Chen Q, Zeng C and Hou B 2004 Adv. Mater. 16 137
|
[45] |
Wang J, Wu Y J and Zhu Y J 2007 Mater. Chem. Phys. 106 1
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|