Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 025204    DOI: 10.1088/1674-1056/27/2/025204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Dust charging and levitating in a sheath of plasma containing energetic particles

Jing Ou(欧靖)1,2, Xiao-Yun Zhao(赵晓云)1,3, Bin-Bin Lin(林滨滨)1
1. Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
2. Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031, China;
3. School of Physics and Electronic Engineering, Fuyang Normal University, Fuyang 236037, China
Abstract  The structure of the sheath in the presence of energetic particles is investigated in the multi-fluid framework. Based on the orbital motion limited (OML) theory, the dust grain charging inside the sheath of plasma containing energetic particles is examined for the carbon wall, and then the effect of the energetic particles on the stationary dust particle inside the sheath is discussed through the trapping potential energy. It is found that with the increase of energetic ion concentration or energy, the size of dust staying in levitation equilibrium decreases and the levitating position is much closer to the wall. In the case of deuterium ions as energetic ions, the bigger dust particle can be trapped by the sheath than in the case of hydrogen ions as energetic ions. When the energetic electron component is present, the levitating position of dust particle in the sheath depends strongly on the energetic electron. The levitating dust particle is closer to the wall as the energetic electron energy or concentration is increased. In addition, with the increase of temperature of thermal background ion, the size of dust particle trapped by the sheath decreases and the levitating positions of dust particles with the same size radius inside the sheath move toward the wall. Our results can be helpful in investigating the property of the sheath where the energetic particle component is present.
Keywords:  sheath      energetic particles      dust particle  
Received:  18 October 2017      Revised:  20 November 2017      Accepted manuscript online: 
PACS:  52.40.Kh (Plasma sheaths)  
  52.27.Lw (Dusty or complex plasmas; plasma crystals)  
  52.30.Ex (Two-fluid and multi-fluid plasmas)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11475223), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2015GB101003), and the JSPS-NRF-NSFC A3 Foresight Program in the field of Plasma Physics (Grant Nos. 11261140328 and 2012K2A2A6000443).
Corresponding Authors:  Jing Ou     E-mail:  ouj@ipp.ac.cn
About author:  52.40.Kh; 52.27.Lw; 52.30.Ex

Cite this article: 

Jing Ou(欧靖), Xiao-Yun Zhao(赵晓云), Bin-Bin Lin(林滨滨) Dust charging and levitating in a sheath of plasma containing energetic particles 2018 Chin. Phys. B 27 025204

[1] Heidbrink W W and Sadler G J 1994 Nucl. Fusion 34 535
[2] Basiuk V, Eriksson L G, Bergeaud V, Chantant M, Martin G, Nguyen F, Reichle R, Vallet J C, Delpeche L and Surle F 2004 Nucl. Fusion 44 181
[3] Zhu Y B, Heidbrink W W and Pickering L D 2010 Nucl. Fusion 50 084024
[4] Li Y L, Xu G S, Wang H Q, Xiao C, Wan B N, Gao Z, Chen R, Wang L, Gan K F, Yang J H, Zhang X J, Liu S C, Li M H, Ding S, Yan S N, Zhang W, Hu G H, Liu Y L, Shao L M, Li J, Chen L, Zhao N, Xu J C, Yang Q Q, Lan H and Ye Y 2015 Phys. Plasmas 22 022510
[5] Wu B, Hao B, White R, Wang J, Zang Q, Han X and Hu C 2017 Plasma Phys. Control. Fusion 59 025004
[6] Tang T, Hu J S, Li J G, Li Y Y, Morfill G and Ashikawa N 2011 J. Nucl. Mater. 415 S1094
[7] West W P and Bray B D 2007 J. Nucl. Mater. 363-365 107
[8] Shiraishi K and Takamura S 1992 Contrib. Plasma Phys. 32 243
[9] Stangeby P C 1995 Plasma Phys. Control. Fusion 37 1031
[10] Tskhakaya D, Kuhn S, Petrzilka V and Khanal R 2002 Phys. Plasmas 9 2486
[11] Ou J, Lin B B, Zhao X Y and Yang Y L 2016 Plasma Phys. Control. Fusion 58 075004
[12] Ou J, Xiang N, Gan C Y and Yang J H 2013 Phys. Plasmas 20 063502
[13] Lin B B, Xiang N, Ou J and Zhao X Y 2017 Chin. Phys. Lett. 34 5203
[14] Delzanno G L and Tang X 2014 Phys. Plasma 21 022502
[15] Pandey B P, Samarian A and Vladimirov S V 2007 Phys. Plasma 14 093703
[16] Beadles R, Wang X and Horanyi M 2017 Phys. Plasma 24 023701
[17] Foroutan G and Akhoundi A 2012 Phys. Plasmas 19 103505
[18] Chung T H 2014 J. Korean Phys. Soc. 65 1873
[19] Nitter T 1996 Plasma Sources Sci. Technol. 5 93
[20] Wang D, Liu D and Liu J 2000 J. Appl. Phys. 88 1276
[21] Wu J, Liu G, Y L M and Duan R X 2012 Acta Phys. Sin. 61 075205(in Chinese)
[22] Zou X 2006 Chin. Phys. Lett. 23 396
[23] Liu J Y, Chen L,Wang F, Wang N and Duan P 2010 Acta Phys. Sin. 59 8692(in Chinese)
[24] Kawamura G, Tomita Y and Kirschner A 2013 J. Nucl. Mater. 438 S909
[25] Sun Z Y, Sang C F, Hu W P and Wang D Z 2014 Acta Phys. Sin. 63 145204(in Chinese)
[26] Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Bristol:IOP Publishing)
[27] Young J R 1957 J. Appl. Phys. 28 524
[28] Walker C G H, El Gomati M M, Assa'd A M D and Zadrazil M 2008 Scanning 30 365
[29] Franklin R N 2003 J. Phys. D:Appl. Phys. 36 1806
[30] Cercek M, Filipic G, Gyergyek T and Kovacic J 2010 Contrib. Plasma Phys. 50 909
[31] Riemann K U 1995 IEEE Trans. Plasma Sci. 23 4
[32] Delzanno G L and Tang X 2015 Phys. Plasmas 22 113703
[33] Zou, X, Liu J Y, Wang Z X, Gong Y, Liu Y and Wang X G 2004 Acta Phys. Sin. 53 3409(in Chinese)
[34] Salimullah M, Sandberg I and Shukla P K 2003 Phys. Rev. E 68 027403
[1] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[2] Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model
Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺). Chin. Phys. B, 2021, 30(4): 045203.
[3] Light propagation characteristics of turbulent plasma sheath surrounding the hypersonic aerocraft
Chunjing Lv(吕春静), Zhiwei Cui(崔志伟), Yiping Han(韩一平). Chin. Phys. B, 2019, 28(7): 074203.
[4] Estimation of tungsten production from the upper divertor in EAST during edge localized modes
Jing Ou(欧靖), Nong Xiang(项农), Zong-Zheng Men(门宗政), Ling Zhang(张凌), Ji-Chan Xu(许吉禅), Wei Gao(高伟). Chin. Phys. B, 2019, 28(12): 125201.
[5] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[6] Sheath structure in plasma with two species of positive ions and secondary electrons
Xiao-Yun Zhao(赵晓云), Nong Xiang(项农), Jing Ou(欧靖), De-Hui Li(李德徽), Bin-Bin Lin(林滨滨). Chin. Phys. B, 2016, 25(2): 025202.
[7] Effects of q-profiles of a weak magnetic shear on energetic ion excited q=1 mode in tokamak plasmas
Ze-Yu Li(李泽宇), Xian-Qu Wang(王先驱), Xiao-Gang Wang(王晓钢). Chin. Phys. B, 2016, 25(1): 015203.
[8] Experimental and modeling researches of dust particles in the HL-2A tokamak
Huang Zhi-Hui (黄治辉), Yan Long-Wen (严龙文), Tomita Yukihiro (冨田幸博), Feng Zhen (冯震), Cheng Jun (程钧), Hong Wen-Yu (洪文玉), Pan Yu-Dong (潘宇东), Yang Qing-Wei (杨青巍), Duan Xu-Ru (段旭如), HL-2A Team. Chin. Phys. B, 2015, 24(2): 025204.
[9] A two-dimensional model of He/O2 atmospheric pressure plasma needle discharge
Qian Mu-Yang (钱沐杨), Yang Cong-Ying (杨从影), Chen Xiao-Chang (陈小昌), Liu San-Qiu (刘三秋), Yan Wen (晏雯), Liu Fu-Cheng (刘富成), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(12): 125203.
[10] Characteristics of wall sheath and secondary electron emission under different electron temperatures in a Hall thruster
Duan Ping (段萍), Qin Hai-Juan (覃海娟), Zhou Xin-Wei (周新维), Cao An-Ning (曹安宁), Chen Long (陈龙), Gao Hong (高宏). Chin. Phys. B, 2014, 23(7): 075203.
[11] Effects of some parameters on the divertor plasma sheath characteristics and fuel retention in castellated tungsten tile gaps
Sang Chao-Feng (桑超峰), Dai Shu-Yu (戴舒宇), Sun Ji-Zhong (孙继忠), Bonnin Xavier, Xu Qian (徐倩), Ding Fang (丁芳), Wang De-Zhen (王德真). Chin. Phys. B, 2014, 23(11): 115201.
[12] Kadomtsev–Petviashvili equation for dust ion-acoustic solitons in pair-ion plasmas
Hafeez Ur-Rehman. Chin. Phys. B, 2013, 22(3): 035202.
[13] On characteristics of sheath damping near a dielectric wall with secondary electron emission
Yu Da-Ren(于达仁), Qing Shao-Wei(卿绍伟), Yan Guo-Jun(闫国军), and Duan Ping(段萍). Chin. Phys. B, 2011, 20(6): 065204.
[14] A three-dimensional time-dependent theory for helix traveling wave tubes in beam-wave interaction
Peng Wei-Feng(彭维峰), Hu Yu-Lu(胡玉禄), Yang Zhong-Hai(杨中海), Li Jian-Qing(李建清), Lu Qi-Ru(陆麒如), and Li Bin(李斌). Chin. Phys. B, 2011, 20(2): 028401.
[15] Near-wall conductivity effect under a space–charge-saturated sheath in the Hall thruster
Zhang Feng-Kui(张凤奎), Ding Yong-Jie(丁永杰), Qing Shao-Wei(卿绍伟), and Wu Xian-De(吴限德) . Chin. Phys. B, 2011, 20(12): 125201.
No Suggested Reading articles found!