Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(12): 125201    DOI: 10.1088/1674-1056/ab5279
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Estimation of tungsten production from the upper divertor in EAST during edge localized modes

Jing Ou(欧靖)1,2, Nong Xiang(项农)1,2, Zong-Zheng Men(门宗政)1, Ling Zhang(张凌)1, Ji-Chan Xu(许吉禅)1, Wei Gao(高伟)1
1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
2 Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031, China
Abstract  During edge localized modes (ELMs), the sheath evolution in front of the Experimental Advanced Superconducting Tokamak (EAST) upper divertor is studied to estimate the sputtered tungsten (W) atoms from the divertor target. A large potential drop across the sheath is formed during ELMs by compared with inter-ELMs, and the maximum of sheath potential drop can exceed one thousand of eV in current EAST operation. Due to the enhancement of the sheath potential drop during ELMs, the W physical sputtering yield from the deuterium (D) ions and the impurity ions on the upper divertor target is found to be significant. It is established that the sputtered W yield during ELMs is at least higher by an order of magnitude than inter-ELMs, and D ions and carbon (C) ions are the main ions governing the W production for the current H-mode with ELMs discharges. With increase in the pedestal electron temperature, the maximum of the D and C ion impact energy during ELMs shows a nearly linear increase, and the D ions have sufficient impact energy to cause the strong W physical sputtering. As a consequence, the D ions may dominate the sputtered W flux from the divertor target when the C concentration is controlled less than one percent for the higher heating power H-mode with ELM discharges in near future.
Keywords:  sheath      edge localized modes      impact energy  
Received:  18 July 2019      Revised:  22 October 2019      Accepted manuscript online: 
PACS:  52.40.Kh (Plasma sheaths)  
  52.25.Vy (Impurities in plasmas)  
  52.40.Hf (Plasma-material interactions; boundary layer effects)  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFE0300400 and 2017YFE0301300), the National Natural Science Foundation of China (Grant Nos. 11475223 and 11775257), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2015GB101003), and also partly supported by AHNSF of China (Grant No. 1808085J07).
Corresponding Authors:  Jing Ou     E-mail:  ouj@ipp.ac.cn

Cite this article: 

Jing Ou(欧靖), Nong Xiang(项农), Zong-Zheng Men(门宗政), Ling Zhang(张凌), Ji-Chan Xu(许吉禅), Wei Gao(高伟) Estimation of tungsten production from the upper divertor in EAST during edge localized modes 2019 Chin. Phys. B 28 125201

[1] Krieger K, Maier H, Neu R and ASDEX Upgrade Team 1999 J. Nucl. Mater. 266-269 207
[2] Matthews G F, Beurskens M, Brezinsek S, Groth M, Joffrin E, Loving A, Kear M, Mayoral M L, Neu R, Prior P, Riccardo V, Rimini F, Rubel M, Sips G, Villedieu E, de Vries P, Watkins M L and EFDA-JET contributors 2011 Phys. Scr. T145 014001
[3] Yao D, Luo G, Du S, Cao L, Zhou Z, Xu T, Ji X, Liu C, Liang C, Li Q, Wang W, Zhao S, Xu Y, Li L, Wang Z, Xiao X, Qi M, Wang S and Li J 2015 Fusion Eng. 98-99 1692
[4] Wan Y, Li J, Liu Y, Wang X, Chan V, Chen C, Duan X, Fu P, Gao X, Feng K, Liu S, Song Y, Weng P, Wan B, Wan F, Wang H, Wu S, Ye M, Yang Q, Zheng G, Zhuang G, Li Q and CFETR team 2017 Nucl. Fusion 57 102009
[5] Wan B N, Liang Y F, Gong X Z, Li J G, Xiang N, Xu G S, Sun Y W, Wang L, Qian J P, Liu H Q, Zhang X D, Hu L Q, Hu J S, Liu F K, Hu C D, Zhao Y P, Zeng L, Wang M, Xu H D, Luo G N, Garofalo A M, Ekedahl A, Zhang L, Zhang X J, Huang J, Ding B J, Zang Q, Li M H, Ding F, Ding S Y, Lyu B, Yu Y W, Zhang T, Zhang Y, Li G Q, Xia T Y, EAST team and Collaborators 2017 Nucl. Fusion 57 102019
[6] Garofalo A M, Gong X Z, Qian J, Chen J, Li G, Li K, Li M H, Zhai X, Bonoli P, Brower D, Cao L, Cui L, Ding S, Ding W X, Guo W, Holcomb C, Huang J, Hyatt A, Lanctot M, Lao L L, Liu H, Lyu B, McClenaghan J, Peysson Y, Ren Q, Shiraiwa S, Solomon W, Zang Q and Wan B 2017 Nucl. Fusion 57 076037
[7] Philipps V 2011 J. Nucl. Mater. 415 S2
[8] Moulton D, Ghendrih Ph, Fundamenski W, Manfredi G and Tskhakaya D 2013 Plasma Phys. Control. Fusion 55 085003
[9] Bergmann A 2002 Nucl. Fusion 42 1162
[10] Dai S and Wang D 2018 Nucl. Fusion 58 014006
[11] Guillemaut G, Jardin A, Horacek J, Borodkina I, Autricque A, Arnoux G, Boom J, Brezinsek S, Coenen J W, Luna E De La, Devaux S, Eich T, Harting D, Kirschner A, Lipschultz B, Matthews G F, Meigs A, Moulton D, O'Mullane M, Stamp M and JET contributors 2016 Phys. Scr. T167 014005
[12] Mao H, Ding F, Luo G, Hu Z, Chen X, Xu F, Hu J, Zuo G, Sun Z, Yu Y, Wu J, Wang L, Duan Y, Xu J, Chen J, Yang Z, Ding R, Xie H and EAST team 2017 Nucl. Mater. Energy 12 447
[13] Xie H, Ding R, Kirschner A, Chen J L, Ding F, Mao H M, Feng W, Borodin D and Wang L 2017 Phys. Plasmas 24 092512
[14] Wang F, Zha X J, Duan Y M, S T Mao S T, Wang L, Zhong F C, Liang L, Li L, Lu H W, Hu L Q, Chen Y P and Yang Z D 2018 Plasma Phys. Control. Fusion 60 125005
[15] Dai S, Wang L, Kirschner A and Wang D 2015 Nucl. Fusion 55 043003
[16] Havlickova E, Fundamenski W, Tskhakaya D, Manfredi G and Moulton D 2012 Plasma Phys. Control. Fusion 54 045002
[17] Manfredi G, Hirstoaga S and Devaux S 2011 Plasma Phys. Control. Fusion 53 015012
[18] Sun Z, Sang C, Hu W and Wang D 2014 Acta Phys. Sin. 63 145204 (in Chinese)
[19] Franklin R N 2003 J. Phys. D: Appl. Phys. 36 1806
[20] Lin B, Xiang N, Ou J and Zhao X 2017 Chin. Phys. Lett. 34 015203
[21] Riemann K U 1995 IEEE Transaction Plasma Science 23 709
[22] Chung H K, see https://www-amdis.iaea.org/FLYCHK/for NLTE kinetics modeling code
[23] Zhang L, Morita S, Xu Z, Wu Z, Zhang P, Wu C, Gao W, Ohishi T, Goto M, Shen J, Chen Y, Liu X, Wang Y, Dong C, Zhang H, Huang X, Gong X, Hu L, Chen J, Zhang X, Wan B and Li J 2015 Rev. Sci. Instrum. 86 123509
[24] Yamamura Y 1996 At. Data Nucl. Data Tables 62 149
[25] Yamamura Y, Itikawa Y and Itoh N 1983 Angular dependence of sputtering yields of monoatomic solids Institute of Plasma Physics, Nagoya, Japan Report number IPPJ-AM-26
[26] Han X, Zang Q, Xiao S, Wang T, Hu A, Tian B, Li D, Zhou H, Zhao J, Hsieh C, Li M, Yan N, Gong X, Hu L, Xu G, Gao X and EAST team 2017 Plasma Phys. Control. Fusion 59 045007
[27] Dong L, Duan Y, Chen K, Yang X, Zhang L, Xu F, Chen J, Mao S, Wu Z and Hu L 2018 Plasma Sci. Technol. 20 065102
[28] Liu C, Zhang L, Cao L, Li L, Han L, Wang Z, Xu H, Liu Y, Liu L, Yao D, Gong X and Song Y 2017 Fusion Eng. 125 93
[1] Numerical simulation of anode heat transfer of nitrogen arc utilizing two-temperature chemical non-equilibrium model
Chong Niu(牛冲), Surong Sun(孙素蓉), Jianghong Sun(孙江宏), and Haixing Wang(王海兴). Chin. Phys. B, 2021, 30(9): 095206.
[2] Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model
Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺). Chin. Phys. B, 2021, 30(4): 045203.
[3] Light propagation characteristics of turbulent plasma sheath surrounding the hypersonic aerocraft
Chunjing Lv(吕春静), Zhiwei Cui(崔志伟), Yiping Han(韩一平). Chin. Phys. B, 2019, 28(7): 074203.
[4] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[5] Dust charging and levitating in a sheath of plasma containing energetic particles
Jing Ou(欧靖), Xiao-Yun Zhao(赵晓云), Bin-Bin Lin(林滨滨). Chin. Phys. B, 2018, 27(2): 025204.
[6] Sheath structure in plasma with two species of positive ions and secondary electrons
Xiao-Yun Zhao(赵晓云), Nong Xiang(项农), Jing Ou(欧靖), De-Hui Li(李德徽), Bin-Bin Lin(林滨滨). Chin. Phys. B, 2016, 25(2): 025202.
[7] A two-dimensional model of He/O2 atmospheric pressure plasma needle discharge
Qian Mu-Yang (钱沐杨), Yang Cong-Ying (杨从影), Chen Xiao-Chang (陈小昌), Liu San-Qiu (刘三秋), Yan Wen (晏雯), Liu Fu-Cheng (刘富成), Wang De-Zhen (王德真). Chin. Phys. B, 2015, 24(12): 125203.
[8] Characteristics of wall sheath and secondary electron emission under different electron temperatures in a Hall thruster
Duan Ping (段萍), Qin Hai-Juan (覃海娟), Zhou Xin-Wei (周新维), Cao An-Ning (曹安宁), Chen Long (陈龙), Gao Hong (高宏). Chin. Phys. B, 2014, 23(7): 075203.
[9] Effects of some parameters on the divertor plasma sheath characteristics and fuel retention in castellated tungsten tile gaps
Sang Chao-Feng (桑超峰), Dai Shu-Yu (戴舒宇), Sun Ji-Zhong (孙继忠), Bonnin Xavier, Xu Qian (徐倩), Ding Fang (丁芳), Wang De-Zhen (王德真). Chin. Phys. B, 2014, 23(11): 115201.
[10] On characteristics of sheath damping near a dielectric wall with secondary electron emission
Yu Da-Ren(于达仁), Qing Shao-Wei(卿绍伟), Yan Guo-Jun(闫国军), and Duan Ping(段萍). Chin. Phys. B, 2011, 20(6): 065204.
[11] Observation of chaotic ELMs in HL-2A tokamak
Huang Yuan(黄渊), Nie Lin(聂林), Yu De-Liang(余德良), Liu Chun-Hua(刘春华), Feng Zhen(冯震), and Duan Xu-Ru(段旭如). Chin. Phys. B, 2011, 20(5): 055201.
[12] A three-dimensional time-dependent theory for helix traveling wave tubes in beam-wave interaction
Peng Wei-Feng(彭维峰), Hu Yu-Lu(胡玉禄), Yang Zhong-Hai(杨中海), Li Jian-Qing(李建清), Lu Qi-Ru(陆麒如), and Li Bin(李斌). Chin. Phys. B, 2011, 20(2): 028401.
[13] Near-wall conductivity effect under a space–charge-saturated sheath in the Hall thruster
Zhang Feng-Kui(张凤奎), Ding Yong-Jie(丁永杰), Qing Shao-Wei(卿绍伟), and Wu Xian-De(吴限德) . Chin. Phys. B, 2011, 20(12): 125201.
[14] Experimental studies of plasma sheath near meshes of different transmissivity
Li Yi-Ren(李毅人), Ma Jin-Xiu(马锦秀), Zheng Yao-Bang(郑尧邦), and Zhang Wen-Gui(张文贵). Chin. Phys. B, 2010, 19(8): 085201.
[15] Generation of fast protons in moderate-intensity laser-plasma interaction from rear sheath
Tan Zhi-Xin(谭志新), Huang Yong-Sheng(黄永盛), Lan Xiao-Fei(兰小飞) , Lu Jian-Xin(路建新), Duan Xiao-Jiao(段晓礁), Wang Lei-Jian(王雷剑), Yang Da-Wei(杨大为), Guo Shi-Lun(郭士伦), and Wang Nai-Yan(王乃彦). Chin. Phys. B, 2010, 19(5): 055201.
No Suggested Reading articles found!