PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Estimation of tungsten production from the upper divertor in EAST during edge localized modes |
Jing Ou(欧靖)1,2, Nong Xiang(项农)1,2, Zong-Zheng Men(门宗政)1, Ling Zhang(张凌)1, Ji-Chan Xu(许吉禅)1, Wei Gao(高伟)1 |
1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China; 2 Magnetic Fusion Theory, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract During edge localized modes (ELMs), the sheath evolution in front of the Experimental Advanced Superconducting Tokamak (EAST) upper divertor is studied to estimate the sputtered tungsten (W) atoms from the divertor target. A large potential drop across the sheath is formed during ELMs by compared with inter-ELMs, and the maximum of sheath potential drop can exceed one thousand of eV in current EAST operation. Due to the enhancement of the sheath potential drop during ELMs, the W physical sputtering yield from the deuterium (D) ions and the impurity ions on the upper divertor target is found to be significant. It is established that the sputtered W yield during ELMs is at least higher by an order of magnitude than inter-ELMs, and D ions and carbon (C) ions are the main ions governing the W production for the current H-mode with ELMs discharges. With increase in the pedestal electron temperature, the maximum of the D and C ion impact energy during ELMs shows a nearly linear increase, and the D ions have sufficient impact energy to cause the strong W physical sputtering. As a consequence, the D ions may dominate the sputtered W flux from the divertor target when the C concentration is controlled less than one percent for the higher heating power H-mode with ELM discharges in near future.
|
Received: 18 July 2019
Revised: 22 October 2019
Accepted manuscript online:
|
PACS:
|
52.40.Kh
|
(Plasma sheaths)
|
|
52.25.Vy
|
(Impurities in plasmas)
|
|
52.40.Hf
|
(Plasma-material interactions; boundary layer effects)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2017YFE0300400 and 2017YFE0301300), the National Natural Science Foundation of China (Grant Nos. 11475223 and 11775257), the National Magnetic Confinement Fusion Science Program of China (Grant No. 2015GB101003), and also partly supported by AHNSF of China (Grant No. 1808085J07). |
Corresponding Authors:
Jing Ou
E-mail: ouj@ipp.ac.cn
|
Cite this article:
Jing Ou(欧靖), Nong Xiang(项农), Zong-Zheng Men(门宗政), Ling Zhang(张凌), Ji-Chan Xu(许吉禅), Wei Gao(高伟) Estimation of tungsten production from the upper divertor in EAST during edge localized modes 2019 Chin. Phys. B 28 125201
|
[1] |
Krieger K, Maier H, Neu R and ASDEX Upgrade Team 1999 J. Nucl. Mater. 266-269 207
|
[2] |
Matthews G F, Beurskens M, Brezinsek S, Groth M, Joffrin E, Loving A, Kear M, Mayoral M L, Neu R, Prior P, Riccardo V, Rimini F, Rubel M, Sips G, Villedieu E, de Vries P, Watkins M L and EFDA-JET contributors 2011 Phys. Scr. T145 014001
|
[3] |
Yao D, Luo G, Du S, Cao L, Zhou Z, Xu T, Ji X, Liu C, Liang C, Li Q, Wang W, Zhao S, Xu Y, Li L, Wang Z, Xiao X, Qi M, Wang S and Li J 2015 Fusion Eng. 98-99 1692
|
[4] |
Wan Y, Li J, Liu Y, Wang X, Chan V, Chen C, Duan X, Fu P, Gao X, Feng K, Liu S, Song Y, Weng P, Wan B, Wan F, Wang H, Wu S, Ye M, Yang Q, Zheng G, Zhuang G, Li Q and CFETR team 2017 Nucl. Fusion 57 102009
|
[5] |
Wan B N, Liang Y F, Gong X Z, Li J G, Xiang N, Xu G S, Sun Y W, Wang L, Qian J P, Liu H Q, Zhang X D, Hu L Q, Hu J S, Liu F K, Hu C D, Zhao Y P, Zeng L, Wang M, Xu H D, Luo G N, Garofalo A M, Ekedahl A, Zhang L, Zhang X J, Huang J, Ding B J, Zang Q, Li M H, Ding F, Ding S Y, Lyu B, Yu Y W, Zhang T, Zhang Y, Li G Q, Xia T Y, EAST team and Collaborators 2017 Nucl. Fusion 57 102019
|
[6] |
Garofalo A M, Gong X Z, Qian J, Chen J, Li G, Li K, Li M H, Zhai X, Bonoli P, Brower D, Cao L, Cui L, Ding S, Ding W X, Guo W, Holcomb C, Huang J, Hyatt A, Lanctot M, Lao L L, Liu H, Lyu B, McClenaghan J, Peysson Y, Ren Q, Shiraiwa S, Solomon W, Zang Q and Wan B 2017 Nucl. Fusion 57 076037
|
[7] |
Philipps V 2011 J. Nucl. Mater. 415 S2
|
[8] |
Moulton D, Ghendrih Ph, Fundamenski W, Manfredi G and Tskhakaya D 2013 Plasma Phys. Control. Fusion 55 085003
|
[9] |
Bergmann A 2002 Nucl. Fusion 42 1162
|
[10] |
Dai S and Wang D 2018 Nucl. Fusion 58 014006
|
[11] |
Guillemaut G, Jardin A, Horacek J, Borodkina I, Autricque A, Arnoux G, Boom J, Brezinsek S, Coenen J W, Luna E De La, Devaux S, Eich T, Harting D, Kirschner A, Lipschultz B, Matthews G F, Meigs A, Moulton D, O'Mullane M, Stamp M and JET contributors 2016 Phys. Scr. T167 014005
|
[12] |
Mao H, Ding F, Luo G, Hu Z, Chen X, Xu F, Hu J, Zuo G, Sun Z, Yu Y, Wu J, Wang L, Duan Y, Xu J, Chen J, Yang Z, Ding R, Xie H and EAST team 2017 Nucl. Mater. Energy 12 447
|
[13] |
Xie H, Ding R, Kirschner A, Chen J L, Ding F, Mao H M, Feng W, Borodin D and Wang L 2017 Phys. Plasmas 24 092512
|
[14] |
Wang F, Zha X J, Duan Y M, S T Mao S T, Wang L, Zhong F C, Liang L, Li L, Lu H W, Hu L Q, Chen Y P and Yang Z D 2018 Plasma Phys. Control. Fusion 60 125005
|
[15] |
Dai S, Wang L, Kirschner A and Wang D 2015 Nucl. Fusion 55 043003
|
[16] |
Havlickova E, Fundamenski W, Tskhakaya D, Manfredi G and Moulton D 2012 Plasma Phys. Control. Fusion 54 045002
|
[17] |
Manfredi G, Hirstoaga S and Devaux S 2011 Plasma Phys. Control. Fusion 53 015012
|
[18] |
Sun Z, Sang C, Hu W and Wang D 2014 Acta Phys. Sin. 63 145204 (in Chinese)
|
[19] |
Franklin R N 2003 J. Phys. D: Appl. Phys. 36 1806
|
[20] |
Lin B, Xiang N, Ou J and Zhao X 2017 Chin. Phys. Lett. 34 015203
|
[21] |
Riemann K U 1995 IEEE Transaction Plasma Science 23 709
|
[22] |
Chung H K, see https://www-amdis.iaea.org/FLYCHK/for NLTE kinetics modeling code
|
[23] |
Zhang L, Morita S, Xu Z, Wu Z, Zhang P, Wu C, Gao W, Ohishi T, Goto M, Shen J, Chen Y, Liu X, Wang Y, Dong C, Zhang H, Huang X, Gong X, Hu L, Chen J, Zhang X, Wan B and Li J 2015 Rev. Sci. Instrum. 86 123509
|
[24] |
Yamamura Y 1996 At. Data Nucl. Data Tables 62 149
|
[25] |
Yamamura Y, Itikawa Y and Itoh N 1983 Angular dependence of sputtering yields of monoatomic solids Institute of Plasma Physics, Nagoya, Japan Report number IPPJ-AM-26
|
[26] |
Han X, Zang Q, Xiao S, Wang T, Hu A, Tian B, Li D, Zhou H, Zhao J, Hsieh C, Li M, Yan N, Gong X, Hu L, Xu G, Gao X and EAST team 2017 Plasma Phys. Control. Fusion 59 045007
|
[27] |
Dong L, Duan Y, Chen K, Yang X, Zhang L, Xu F, Chen J, Mao S, Wu Z and Hu L 2018 Plasma Sci. Technol. 20 065102
|
[28] |
Liu C, Zhang L, Cao L, Li L, Han L, Wang Z, Xu H, Liu Y, Liu L, Yao D, Gong X and Song Y 2017 Fusion Eng. 125 93
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|