PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES |
Prev
Next
|
|
|
Effects of some parameters on the divertor plasma sheath characteristics and fuel retention in castellated tungsten tile gaps |
Sang Chao-Feng (桑超峰)a, Dai Shu-Yu (戴舒宇)a, Sun Ji-Zhong (孙继忠)a, Bonnin Xavierb, Xu Qian (徐倩)c, Ding Fang (丁芳)c, Wang De-Zhen (王德真)a |
a Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China;
b LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, Villetaneuse 93430, France;
c Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China |
|
|
Abstract Castellation of plasma facing components is foreseen as the best solution for ensuring the lifetime of future fusion devices. However, the gaps between the resulting surface elements can increase fuel retention and complicate fuel removal issues. To know how the fuel is retained inside the gaps, the plasma sheath around the gaps needs to be understood first. In this work, a kinetic model is used to study plasma characteristics around the divertor gaps with the focus on the H+ penetration depth inside the poloidal gaps, and a rate-theory model is coupled to simulate the hydrogen retention inside the tungsten gaps. By varying the magnetic field strength and plasma temperature, we find that the H+ cyclotron radius has a significant effect on the penetration depth. Besides, the increase of magnetic field inclination angle can also increase the penetration depth. It is found in this work that parameters as well as the penetration depth strongly affect fuel retention in tungsten gaps.
|
Received: 01 March 2014
Revised: 01 April 2013
Accepted manuscript online:
|
PACS:
|
52.40.Kh
|
(Plasma sheaths)
|
|
52.55.Rk
|
(Power exhaust; divertors)
|
|
52.65.Rr
|
(Particle-in-cell method)
|
|
52.65.-y
|
(Plasma simulation)
|
|
Fund: Project supported by the National Magnetic Confinement Fusion Science Program, China (Grant No. 2013GB109001), the National Natural Science Foundation of China (Grant Nos. 11275042 and 11305026), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. DUT14RC(3)039). |
Corresponding Authors:
Sang Chao-Feng, Wang De-Zhen
E-mail: sang@dlut.edu.cn;wangdez@dlut.edu.cn
|
Cite this article:
Sang Chao-Feng (桑超峰), Dai Shu-Yu (戴舒宇), Sun Ji-Zhong (孙继忠), Bonnin Xavier, Xu Qian (徐倩), Ding Fang (丁芳), Wang De-Zhen (王德真) Effects of some parameters on the divertor plasma sheath characteristics and fuel retention in castellated tungsten tile gaps 2014 Chin. Phys. B 23 115201
|
[1] |
Du H L, Sang C F, Wang L, Sun J Z, Liu S C, Wang H Q, Zhang L, Guo H Y and Wang D Z 2013 Acta Phys. Sin. 62 245206 (in Chinese)
|
[2] |
Huang Y, Sun J Z, Sang C F, Ding F and Wang D Z 2014 Acta Phys. Sin. 63 035204 (in Chinese)
|
[3] |
Rubel M J, Coad J P and Pitts R A 2007 J. Nucl. Mater. 367-370 1432
|
[4] |
Péourié B, Panayotis S, Languille P, Martin C, Dittmar T, Gauthier E, Hatchressian J C, Pascal J Y, Roubin P, Ruffe R, Tsitrone E, Vartanian S, Wang H, Beauté A, Bouvet J, Brosset C, Bucalossi J, Cabié M, Caprin E, Courtois X, Dachicourt R, Delchambre E, Dominici C, Douai D, Ekedahl A, Gunn J P, Hakola A, Jacob W, Khodja H, Likonen J, Linez F, Litnovsky A, Marandet Y, Markelj S, Martinez A, Mayer M, Meyer O, Monier-Garbet P, Moreau P, Negrier V, Oddon P, Pardanaud C, Pasquet B, Pelicon P, Petersson P, Philipps V, Possnert G, Reiter D, Roth J, Roure I, Rubel M, Saint-Laurent F, Samaille F and Vavpeti P 2013 J. Nucl. Mater. 438 S120
|
[5] |
Rubel M J, Sergienko G, Kreter A, Pospieszczyk A, Psoda M and Wessel E 2008 Fusion Eng. Des. 83 1049
|
[6] |
Litnovsky A, Wienhold P, Philipps V, Krieger K, Kirschner A, Matveev D, Borodin D, Sergienko G, Schmitz O, Kreter A, Samm U, Richter S and Breuer U 2009 J. Nucl. Mater. 390-391 556
|
[7] |
Skinner C H, Gentile C A, Hosea J C, Mueller D, Coad J P, Federici G and Haange R 1999 Nucl. Fusion 39 271
|
[8] |
Dejarnac R, Komm M, Stöckel J and Panek R 2008 J. Nucl. Mater. 382 31
|
[9] |
Inai K, Ohya K, Tomita Y, Kirschner A, Litnovsky A and Tanabe T 2009 J. Nucl. Mater. 390-391 119
|
[10] |
Matveev D, Kirschner A, Litnovsky A, Komm M, Borodin D, Philipps V and van Oost G 2010 Plasma Phys. Control. Fusion 52 075007
|
[11] |
Komm M, Dejarnac R, Gunn J P and Pekarek Z 2013 Plasma Phys. Control. Fusion 55 025006
|
[12] |
Zinkle S J 2005 Phys. Plasmas 12 058101
|
[13] |
Sang C, Bonnin X, Warrier M, Rai A, Schneider R, Sun J and Wang D 2012 Nucl. Fusion 52 043003
|
[14] |
Sang C, Sun J and Wang D 2011 J. Nucl. Mater. 415 S204
|
[15] |
Sang C, Sun J, Bonnin X, Guo H and Wang D 2013 J. Nucl. Mater. 438 S1129
|
[16] |
Tskhakaya D, Eliasson B, Shukla P K and Kuhn S 2004 Phys. Plasmas 11 3945
|
[17] |
Sang C, Sun J and Wang D 2010 Plasma Phys. Control. Fusion 52 042001
|
[18] |
Komm M, Dejarnac R, Gunn J P, Kirschner A, Litnovsky A, Matveev D and Pekarek Z 2011 Plasma Phys. Control. Fusion 53 115004
|
[19] |
Dai S, Sang C, Liu S, Sun J and Wang D 2012 Fusion Eng. Des. 87 782
|
[20] |
Tskhakaya D, Matyash K, Schneider R and Taccogna F 2007 Contrib. Plasma Phys. 47 563
|
[21] |
Ogorodnikova O, Roth J and Mayer M 2003 J. Nucl. Mater. 313-316 469
|
[22] |
Frauenfelder R 1969 J. Vac. Sci. Technol. 6 388
|
[23] |
Causey R 2002 J. Nucl. Mater. 300 91
|
[24] |
Ding F, Luo G N, Pitts R A, Litnovsky A, Gong X Z, Ding R, Wampler W R, Stangeby P C, Carpentier S, Hellwig M, Ashikawa N, Fukumoto M, Katayama K, Chen J L, Zhou H S, Yan R, Wu J, Mao H M, Wang W Z, Xie C Y, Zuo G Z, Hu J S, Liu S L and Huang H 2014 J. Nucl. Mater. In Press
|
[25] |
Dejarnac R, Komm M, Gunn J P and Panek R 2009 J. Nucl. Mater. 390-391 818
|
[26] |
Inai K and Ohya K 2008 Contrib. Plasma Phys. 48 275
|
[27] |
Litnovsky A, Philipps V, Kirschner A, Wienhold P, Sergienko G, Kreter A, Samm U, Schmitz O, Krieger K, Karduck P, Blome M, Emmoth B, Rubel M, Breuer U and Scholl A 2007 J. Nucl. Mater. 367-370 1481
|
[28] |
Wittlich K, Hirai T, Compan J, Klimov N, Linke J, Loarte A, Merola M, Pintsuk G, Podkovyrov V, Singheiser L and Zhitlukhin A 2009 Fusion Eng. Des. 84 1982
|
[29] |
Zohm H 1996 Plasma Phys. Control. Fusion 38 105
|
[30] |
Federici G, Skinner C H, Brooks J N, Coad J P, Grisolia C, Haasz A A, Hassanein A, Philipps V, Pitcher C S, Roth J, Wampler W R and Whyte D G 2001 Nucl. Fusion 41 1967
|
[31] |
Sang C, Sun J, Bonnin X, Wang L, Du H, Huang Y and Wang D http:dx.doi.org/10.1016/j.fusengdes.2014.01.040 2014 Fusion Eng. Des. 89 2214
|
[32] |
Tanabe T, Sugiyama K, Skinner C H, Bekris N, Gentile C A and Coad J P 2005 Fusion Sci. Technol. 48 577
|
[33] |
Inai K, Tomita Y, Kawamura G and Ohya K 2010 Fusion Eng. Des. 85 1416
|
[34] |
Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices
|
[35] |
Sang C, Sun J and Wang D 2010 Fusion Eng. Des. 85 1941
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|