Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 115201    DOI: 10.1088/1674-1056/23/11/115201
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effects of some parameters on the divertor plasma sheath characteristics and fuel retention in castellated tungsten tile gaps

Sang Chao-Feng (桑超峰)a, Dai Shu-Yu (戴舒宇)a, Sun Ji-Zhong (孙继忠)a, Bonnin Xavierb, Xu Qian (徐倩)c, Ding Fang (丁芳)c, Wang De-Zhen (王德真)a
a Key Laboratory of Materials Modification by Laser, Ion and Electron Beams (Ministry of Education), School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China;
b LSPM-CNRS, Université Paris 13, Sorbonne Paris Cité, Villetaneuse 93430, France;
c Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China
Abstract  

Castellation of plasma facing components is foreseen as the best solution for ensuring the lifetime of future fusion devices. However, the gaps between the resulting surface elements can increase fuel retention and complicate fuel removal issues. To know how the fuel is retained inside the gaps, the plasma sheath around the gaps needs to be understood first. In this work, a kinetic model is used to study plasma characteristics around the divertor gaps with the focus on the H+ penetration depth inside the poloidal gaps, and a rate-theory model is coupled to simulate the hydrogen retention inside the tungsten gaps. By varying the magnetic field strength and plasma temperature, we find that the H+ cyclotron radius has a significant effect on the penetration depth. Besides, the increase of magnetic field inclination angle can also increase the penetration depth. It is found in this work that parameters as well as the penetration depth strongly affect fuel retention in tungsten gaps.

Keywords:  divertor gaps      penetration depth      plasma sheath      fuel retention  
Received:  01 March 2014      Revised:  01 April 2013      Accepted manuscript online: 
PACS:  52.40.Kh (Plasma sheaths)  
  52.55.Rk (Power exhaust; divertors)  
  52.65.Rr (Particle-in-cell method)  
  52.65.-y (Plasma simulation)  
Fund: 

Project supported by the National Magnetic Confinement Fusion Science Program, China (Grant No. 2013GB109001), the National Natural Science Foundation of China (Grant Nos. 11275042 and 11305026), and the Fundamental Research Funds for the Central Universities of Ministry of Education of China (Grant No. DUT14RC(3)039).

Corresponding Authors:  Sang Chao-Feng, Wang De-Zhen     E-mail:  sang@dlut.edu.cn;wangdez@dlut.edu.cn

Cite this article: 

Sang Chao-Feng (桑超峰), Dai Shu-Yu (戴舒宇), Sun Ji-Zhong (孙继忠), Bonnin Xavier, Xu Qian (徐倩), Ding Fang (丁芳), Wang De-Zhen (王德真) Effects of some parameters on the divertor plasma sheath characteristics and fuel retention in castellated tungsten tile gaps 2014 Chin. Phys. B 23 115201

[1] Du H L, Sang C F, Wang L, Sun J Z, Liu S C, Wang H Q, Zhang L, Guo H Y and Wang D Z 2013 Acta Phys. Sin. 62 245206 (in Chinese)
[2] Huang Y, Sun J Z, Sang C F, Ding F and Wang D Z 2014 Acta Phys. Sin. 63 035204 (in Chinese)
[3] Rubel M J, Coad J P and Pitts R A 2007 J. Nucl. Mater. 367-370 1432
[4] Péourié B, Panayotis S, Languille P, Martin C, Dittmar T, Gauthier E, Hatchressian J C, Pascal J Y, Roubin P, Ruffe R, Tsitrone E, Vartanian S, Wang H, Beauté A, Bouvet J, Brosset C, Bucalossi J, Cabié M, Caprin E, Courtois X, Dachicourt R, Delchambre E, Dominici C, Douai D, Ekedahl A, Gunn J P, Hakola A, Jacob W, Khodja H, Likonen J, Linez F, Litnovsky A, Marandet Y, Markelj S, Martinez A, Mayer M, Meyer O, Monier-Garbet P, Moreau P, Negrier V, Oddon P, Pardanaud C, Pasquet B, Pelicon P, Petersson P, Philipps V, Possnert G, Reiter D, Roth J, Roure I, Rubel M, Saint-Laurent F, Samaille F and Vavpeti P 2013 J. Nucl. Mater. 438 S120
[5] Rubel M J, Sergienko G, Kreter A, Pospieszczyk A, Psoda M and Wessel E 2008 Fusion Eng. Des. 83 1049
[6] Litnovsky A, Wienhold P, Philipps V, Krieger K, Kirschner A, Matveev D, Borodin D, Sergienko G, Schmitz O, Kreter A, Samm U, Richter S and Breuer U 2009 J. Nucl. Mater. 390-391 556
[7] Skinner C H, Gentile C A, Hosea J C, Mueller D, Coad J P, Federici G and Haange R 1999 Nucl. Fusion 39 271
[8] Dejarnac R, Komm M, Stöckel J and Panek R 2008 J. Nucl. Mater. 382 31
[9] Inai K, Ohya K, Tomita Y, Kirschner A, Litnovsky A and Tanabe T 2009 J. Nucl. Mater. 390-391 119
[10] Matveev D, Kirschner A, Litnovsky A, Komm M, Borodin D, Philipps V and van Oost G 2010 Plasma Phys. Control. Fusion 52 075007
[11] Komm M, Dejarnac R, Gunn J P and Pekarek Z 2013 Plasma Phys. Control. Fusion 55 025006
[12] Zinkle S J 2005 Phys. Plasmas 12 058101
[13] Sang C, Bonnin X, Warrier M, Rai A, Schneider R, Sun J and Wang D 2012 Nucl. Fusion 52 043003
[14] Sang C, Sun J and Wang D 2011 J. Nucl. Mater. 415 S204
[15] Sang C, Sun J, Bonnin X, Guo H and Wang D 2013 J. Nucl. Mater. 438 S1129
[16] Tskhakaya D, Eliasson B, Shukla P K and Kuhn S 2004 Phys. Plasmas 11 3945
[17] Sang C, Sun J and Wang D 2010 Plasma Phys. Control. Fusion 52 042001
[18] Komm M, Dejarnac R, Gunn J P, Kirschner A, Litnovsky A, Matveev D and Pekarek Z 2011 Plasma Phys. Control. Fusion 53 115004
[19] Dai S, Sang C, Liu S, Sun J and Wang D 2012 Fusion Eng. Des. 87 782
[20] Tskhakaya D, Matyash K, Schneider R and Taccogna F 2007 Contrib. Plasma Phys. 47 563
[21] Ogorodnikova O, Roth J and Mayer M 2003 J. Nucl. Mater. 313-316 469
[22] Frauenfelder R 1969 J. Vac. Sci. Technol. 6 388
[23] Causey R 2002 J. Nucl. Mater. 300 91
[24] Ding F, Luo G N, Pitts R A, Litnovsky A, Gong X Z, Ding R, Wampler W R, Stangeby P C, Carpentier S, Hellwig M, Ashikawa N, Fukumoto M, Katayama K, Chen J L, Zhou H S, Yan R, Wu J, Mao H M, Wang W Z, Xie C Y, Zuo G Z, Hu J S, Liu S L and Huang H 2014 J. Nucl. Mater. In Press
[25] Dejarnac R, Komm M, Gunn J P and Panek R 2009 J. Nucl. Mater. 390-391 818
[26] Inai K and Ohya K 2008 Contrib. Plasma Phys. 48 275
[27] Litnovsky A, Philipps V, Kirschner A, Wienhold P, Sergienko G, Kreter A, Samm U, Schmitz O, Krieger K, Karduck P, Blome M, Emmoth B, Rubel M, Breuer U and Scholl A 2007 J. Nucl. Mater. 367-370 1481
[28] Wittlich K, Hirai T, Compan J, Klimov N, Linke J, Loarte A, Merola M, Pintsuk G, Podkovyrov V, Singheiser L and Zhitlukhin A 2009 Fusion Eng. Des. 84 1982
[29] Zohm H 1996 Plasma Phys. Control. Fusion 38 105
[30] Federici G, Skinner C H, Brooks J N, Coad J P, Grisolia C, Haasz A A, Hassanein A, Philipps V, Pitcher C S, Roth J, Wampler W R and Whyte D G 2001 Nucl. Fusion 41 1967
[31] Sang C, Sun J, Bonnin X, Wang L, Du H, Huang Y and Wang D http:dx.doi.org/10.1016/j.fusengdes.2014.01.040 2014 Fusion Eng. Des. 89 2214
[32] Tanabe T, Sugiyama K, Skinner C H, Bekris N, Gentile C A and Coad J P 2005 Fusion Sci. Technol. 48 577
[33] Inai K, Tomita Y, Kawamura G and Ohya K 2010 Fusion Eng. Des. 85 1416
[34] Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices
[35] Sang C, Sun J and Wang D 2010 Fusion Eng. Des. 85 1941
[1] Attenuation characteristics of obliquely incident electromagnetic wave in weakly ionized dusty plasma based on modified Bhatnagar-Gross-Krook collision model
Zhaoying Wang(王召迎), Lixin Guo(郭立新), and Jiangting Li(李江挺). Chin. Phys. B, 2021, 30(4): 045203.
[2] Light propagation characteristics of turbulent plasma sheath surrounding the hypersonic aerocraft
Chunjing Lv(吕春静), Zhiwei Cui(崔志伟), Yiping Han(韩一平). Chin. Phys. B, 2019, 28(7): 074203.
[3] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[4] Generalized Drude model and electromagnetic screening in metals and superconductors
Da Wang(王达). Chin. Phys. B, 2018, 27(5): 057401.
[5] Simulations of the effects of density and temperature profile on SMBI penetration depth based on the HL-2A tokamak configuration
Xueke Wu(吴雪科), Huidong Li(李会东), Zhanhui Wang(王占辉), Hao Feng(冯灏), Yulin Zhou(周雨林). Chin. Phys. B, 2017, 26(6): 065201.
[6] Simulations of fast component and slow component of SMBI on HL-2A tokamak
Yong-Fu Shi(史永福), Zhan-Hui Wang(王占辉), Qi-Long Ren(任启龙), Ai-Ping Sun(孙爱萍), De-Liang Yu(余德良), Wen-Feng Guo(郭文峰), Min Xu(许敏). Chin. Phys. B, 2017, 26(5): 055201.
[7] Investigation of molecular penetration depth variation with SMBI fluxes
Yu-Lin Zhou(周雨林), Zhan-Hui Wang(王占辉), Min Xu(许敏), Qi Wang(王奇), Lin Nie(聂林), Hao Feng(冯灏), Wei-Guo Sun(孙卫国). Chin. Phys. B, 2016, 25(9): 095201.
[8] On characteristics of sheath damping near a dielectric wall with secondary electron emission
Yu Da-Ren(于达仁), Qing Shao-Wei(卿绍伟), Yan Guo-Jun(闫国军), and Duan Ping(段萍). Chin. Phys. B, 2011, 20(6): 065204.
[9] Experimental studies of plasma sheath near meshes of different transmissivity
Li Yi-Ren(李毅人), Ma Jin-Xiu(马锦秀), Zheng Yao-Bang(郑尧邦), and Zhang Wen-Gui(张文贵). Chin. Phys. B, 2010, 19(8): 085201.
[10] The microwave response of MgB2/Al2O3 superconducting thin films
Shi Li-Bin(史力斌), Wang Yun-Fei(王云飞), Ke Yu-Yang(柯于洋), Zhang Guo-Hua(张国华), Luo Sheng(罗胜), Zhang Xue-Qiang(张雪强), Li Chun-Guang(李春光), Li Hong(黎红), He Yu-Sheng(何豫生), Yu Zeng-Qiang(于增强), and Wang Fu-Ren(王福仁). Chin. Phys. B, 2007, 16(3): 799-804.
[11] Calculation of ion energy distributions of argon excimer ions generated in helicon plasma
Fang Tong-Zhen (房同珍), Jiang Nan (江南), Wang Long (王龙). Chin. Phys. B, 2005, 14(11): 2256-2261.
[12] Influence of ion species ratio on grid-enhanced plasma source ion implantation
Wang Jiu-Li (王久丽), Zhang Gu-Ling (张谷令), Liu Yuan-Fu (刘元富), Wang You-Nian (王友年), Liu Chi-Zi (刘赤子), Yang Si-Ze (杨思泽). Chin. Phys. B, 2004, 13(1): 65-70.
No Suggested Reading articles found!